Computer anxiety : an examination of its correlates and a test of two possible treatment strategies

Kermith Vernard Harrington
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation

Harrington, Kermith Vernard, "Computer anxiety : an examination of its correlates and a test of two possible treatment strategies" (1986). Retrospective Theses and Dissertations. 18238.
https://lib.dr.iastate.edu/rtd/18238
Computer anxiety: An examination of its correlates and a test of two possible treatment strategies by
Kermith Vernard Harrington
A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE
Interdepartmental Program: Business Administrative Sciences Major: Business Administrative Sciences

Signatures have been redacted for privacy

> Iowa State University Ames, Iowa

1986

Copyright © Kermith Vernard Harrington, 1986. All rights reserved.

TABLE OF CONTENTS

Page
INTRODUCTION 1
A REVIEN OE THE LITERATURE 5
Implementation of Computers into Organizations 5
Technostress 8
Attitudes Toward the System 12
Computer anxiety 12
Individual attitudes toward computers 15
Societal attitudes toward computers 17
Human Versus Machine 20
Computers in the work place 20
Increased performance and stress 23
Ergonomics 27
Training 28
Personal Factors 32
Math anxiety and gender 33
Exposure to and usage of computer technology 36
Computer knowledge/experience 37
Locus of control 38
State/trait anxiety 40
Personality rigidity 41
Self-esteem 42
Powerlessness 42
METHODOLOGY 44
Sample 44
Experimental Design 44
Concepts 46
Instrumentation 47
Attitudes toward computers 47
Page
Human versus machine 48
Personal factors 51
Successful implementation 54
Research Questions 56
RESULTS 57
Statistical Summary 57
Hypothesis Testing 58
T-tests 58
Correlation analysis 59
Regression analysis 64
Analysis of variance 70
DISCUSSION 79
Study Findings and Implications 79
Iimitations of the Study 83
Future Research 87
REFERENCES 92
ACKNOWLEDGMENTS 98
APPENDIX A. SUMMARY OF SCALES USED IN INSTRUMENT BATTERIES 100
APPENDIX B. DIRECTIONAL WEIGHTINGS FOR INSTRUMENT BATTERIES 102
APPENDIX C. ASSIGNED TASK AND INSTRUCTIONS 125
APPENDIX D. MODIFIED WORDSTAR TUTORIAJ 131
APPENDIX E. SUBJECT DEBRIEFING 142
APPENDIX F. SPSSX PROGRAMS AND DATASETS 144

LIST OF FIGURES

Page

Figure 1. Relationship Among Implementation Factors 6
Figure 2. SPLC V-Curve 8
Figure 3. Technostress Error Cycle 10
Figure 4. Implementation Factors Related to Computer Anxiety11
Figure 5. Relationship Between Computer Attitudes and Computer Anxiety 17
Figure 6. Potential for CBT 30
Figure 7. The Vicious and Productive Cycles of Thinking, Feeling and Acting 31
Figure 8. Study Design 45
Figure 9. Study Concepts 47
Figure 10. Phase Two Cross Tabulations 71
Figure 11. Two-Way Interactions on ERRORS 74
Figure 12. Three-Way Interactions on MAU-B 77
Figure 13. Three-Way Interactions on NON-USAGE 78
Figure 14. Forms of State Anxiety 88

IIST OF TABLES

Page

Table 1. Variable Abbreviations Used in Statistical
Table 2. Descriptive Statistics 58
Table 3. Pearson Correlation Coefficients 60
Table 4. Computer Knowledge/Experience Correlations 62
Table 5. State/Trait Anxiety Correlations 63
Table 6. NON-USAGE Correlations 64
Table 7. Regression Analysis One 65
Table 8. Regression Analysis Two 68
Table 9. Dambrot et al. CATT MANOVA Summary . . . 72
Table 10. Maurer CAIN MANOVA Summary 73
Table 11. Dambrot et al. CATT ANOVA Summary . . . 75
Table 12. Maurer CAIN ANOVA Summary 76

INTRODUCTION ${ }^{1}$

In the decade and a half since the development of the microprocessor, these tiny wafers of silicon, which contain more computing power than a roomful of electronics did thirty years ago, have been placed in televisions, microwave ovens, telephones and children's toys. When microprocessors were combined with external memory and input/output devices, a new type of computer, the microcomputer, was born. Sales of these units have been phenomenal. In 1980, the microcomputer sales of 24 companies totaled 724,000 units. By 1983, Apple Computer alone had sold over one million microcomputers (Brod, 1984).

Today, microcomputers keep track of our credit ratings, total our purchases at the grocery store, help keep our homes and offices secure, and tell us when we are getting the best possible performance from our automobile engines. In his book The Third Wave, Toffler (1980) places the microcomputer at the center of the third wave of civilization (the first two being the agricultural and industrial revolutions). He writes of how microcomputers in the home will soon be as

[^0]commonplace as indoor bathrooms or television sets. He also says that the "information explosion" will make various types of information available to people via a computer terminal inside their homes. This information ranges from financial market quotations, to an online version of the Academic American Encyclopedia.

The explosion in sales of microcomputers for home use has been due, to a great extent, to the low cost of these machines. The price of microcomputers currently ranges from less than $\$ 100$ to nearly $\$ 10,000$, with most sales involving systems in the $\$ 1000$ to $\$ 5000$ price range. The low cost of these units allows them to be purchased as one would purchase a video cassette recorder or stereo system.

In less than ten years, the use of computers in education has gone from the nearly exclusive domain of advanced college level students to kindergartners learning how to read. The number of computers in the nation's primary and secondary schools doubled in the years 1982 to 1984 to over 350,000 (Brod, 1984).

In the work place, companies are automating in an effort to increase productivity and profits (Seaward, 1983). This automation has paved the way for vast productivity gains in both manufacturing and service industries. In manufacturing, computer controlled robots have taken over jobs that are either hazardous or highly repetitive. In service industries, automation has allowed for fast and efficient
recording of transactions in banks, airlines, hotels, restaurants, libraries and retailers. Computers linked together over telephone lines have allowed certain groups of people, such as the disabled and individuals with young children, to "telecommute", i.e., work in their homes, thus improving organizational productivity while actually decreasing the number of in-office employees. "Third Wave white-collar work, ... will not require 100 percent of the work force to be concentrated in the work-shop" (Toffler, 1980, p. 199).

Unfortunately, this "computer revolution", described by Brod (1984, p. 4), as "the massive upheaval and restructuring of society by technology" is not being universally accepted. Two basic sources for this resistance to computers and automation have been identified (Howard, 1983). The first source is the lack of knowledge of the computer's capabilities. This resistance can be remedied by education. The second source of resistance is a possible innate fear of computers and technology. This latter condition has been recognized under several names by researchers. Technostress, computerphobia, cyberphobia, and computer anxiety are all terms used to describe the same basic condition: an apprehension towards the use of this new technology. This latter source of resistance to computers is not as easy to recognize or treat as the former.

In this study the author intends to do the following: First, examine possible causes and correlates of this phenomenon (hereafter referred to as computer anxiety). Included will be an examination of the implications of computer anxiety for organizations, the impact that computers have had on individuals and society, and how system implementation methods, individual attitudes, and personal factors play a part in computer anxiety.

Second, results of a research study which attempts to identify possible correlates of computer anxiety will be presented and discussed.

Third, a laboratory experiment provides the vehicle for examining whether or not computer anxiety can be reduced through training.

A REVIEN OF THE IITERATURE

Implementation of Computers into Organizations

What does the fact that some individuals suffer from computer anxiety mean to managers in organizations wishing to implement computer-based information systems? To begin with, it means that these system implementations must be well thought out in order to have any chance of succeeding. There are several factors that management must take into consideration to insure successful implementation of a computer-based information system.

Faerber and Ratliff (1980) point to four reasons for lack of success in implementing a computerized information system in an organization. These are: unrealistic expectations of the computer's capabilities, inadequate systems design, invalid cost/benefit analysis, and resistance by some employees to computer induced change. This last reason is of particular interest to the present study as this resistance may be rooted in computer anxiety. Faerber and Ratliff feel that an honest pre-implementation appraisal of the effects the system will have on jobs will help smooth the implementation process. Hussain and Hussain (1985) support this notion:

Without such a policy, valuable employees who feel their jobs threatened may leave the firm. Usually the best workers leave first, even before the new system is
installed, thereby adding to the problems of conversion. (p. 242)

Lucas (1981) introduced the idea that attitudes towards the system, the technical characteristics of the system, decision style, and personal and situational factors are four variables which are vital to the success of an information system implementation. Figure 1 depicts the conceptual framework developed by Lucas to show the variables which can affect information system implementation.

Figure 1. Relationship Among Implementation Factors (Lucas, 1981, p. 103)

From this figure, we can see that all of the implementation factors in the Lucas framework influence
attitudes towards the system, either directly or indirectly. This indicates that attitudes toward the computer - and possibly levels of computer anxiety - can be influenced by how the system is implemented.

This hypothesis is supported by Collins (1983), who has divided the information system implementation process into three phases: definition activity, development activity and implementation activity. Of these three activities, definition and implementation are highly people-oriented while the development activity is technology-oriented.

Figure 2 graphically represents this idea with the Systems Project Life Cycle (SPLC) V-Curve. On the vertical axis, the percentage of effort devoted to people factors is depicted. The horizontal axis displays the three activities involved in a systems implementation.

Hussain and Hussain (1985) note that:
A new system is feasible only when ... employees are willing to make changes in procedures, to accept experimentation, to operate in an atmosphere of change, and to accept the risk of making errors, should the system design prove faulty. (p. 250)

Adherence to the Faerber and Ratliff (1980) concept of preimplementation appraisal can help insure that these conditions are met.

In a study by Rafaeli (1986), it was shown that job involvement and organizational commitment were positively related to an individual's attitude toward using computers in
the work place. These findings would suggest that there are broad organizational issues to consider during a system implementation.

Figure 2. SPLC V-Curve (Collins, 1983, p. 32)

Technostress

Technostress is defined by Brod (1982, p. 754) as "a condition resulting from the inability of an individual or organization to adapt to the introduction and operation of new technology". Technostress may occur in either the definition or implementation phases of Collins' V-Curve and reduce the effectiveness of the implementation of a new computer system in the work environment. It occurs in these phases as opposed to the development phase because the development phase is dominated by computer professionals.

These individuals presumably do not suffer from computer anxiety because they have made the voluntary choice to work with computers. Brod (1984, p. 18) accuses many of these computer professionals of being "Technocentered" - "They begin to adopt a mindset that mirrors the computer itself".

Technostress is a three phase process. In the first phase, when the automated system is first implemented, some employees will master the operation and use of the computer (i.e., become functional with the system) with relative ease. Many other employees, however, will not. After a time, these non-functional users will begin to alter their patterns of system use. They will go back to manual systems (typewriters and calculators) to get their work done or restrict their activities which involve use of the computer system. This is the avoidance phase.

In the second phase of technostress, information flow is disrupted. In the pre-implementation days, every manager in the organization produced a proportional amount of information. After the introduction of the computer system, computer-functional managers will produce an increased volume of information, while non-functional managers' output will not increase, and may in fact dwindle (due to increased pressure they have put on themselves by choosing to do their jobs without the aid of the computer). This imbalance in the flow of information to subordinates may result in some not
receiving all of the information they need to properly perform their jobs, causing undue pressure.

DEMANDS OF A TECHNOLOGICAL WORK ENVIRONMENT

STRESS

DECREASED PRODUCTIVITY

INCREASED
STRESS

INCREASED

DEMORALIZED USER

Figure 3. Technostress Error Cycle (Brod, 1982, p. 755)

The third phase of technostress finds an increase in error rates. This takes place because non-functional employees will forget or violate necessary procedures that they have not taken the time to learn properly. Time spent
re-learning system procedures leads to less actual productive computer usage time, which leads to more errors due to
backlogs, increased stress, and decreased productivity. Thus begins what Brod refers to as the "Technostress Error Cycle" (see Figure 3).

Figure 4. Implementation Factors Related to Computer Anxiety (adapted from: Lucas, 1981, p. 103)

What causes technostress, a form of computer anxiety, to Occur in some employees and not others? The present study will attempt to address this issue.

Although it deals with the specific activity of implementing an information system into an organization, Lucas's (1981) model can be adapted to illustrate the nature of human resistance to computers in general. This adaptation is made in Figure 4, and examined below.

Attitudes Toward the System

The most important variables to consider during a system implementation are the attitudes toward the system displayed by the organization's employees. If these attitudes are poor and cannot be changed, then the implementation has little, if any, chance of success. "If people are scared silly of computers, automation won't take hold" (Day, 1985, p. 66).

Computer anxiety

What exactly is computer anxiety? To answer this question, we must first understand what is meant by the concept of anxiety in general. Anxiety is a construct developed by psychological researchers in order to explain a particular behavorial phenomenon. Constructs - hypothetical entities which have no actual physical existence - are widely used to explain human behavior (Levitt, 1967).

Anxiety is defined by The American Heritage Dictionary (1985, p. 117) as: "Intense fear or dread lacking an unambiguous cause or a specific threat." A closely related construct, the phobia, is defined by the same source (p. 935)
as: "A persistent, abnormal or illogical fear of a specific thing or situation". Turner (1984) writes "Anxiety is an explanatory term which allows prediction from a variety of situations to a complex and variable set of reactions" (p. 52). May (1950, p. 190) distinguishes between anxiety and fear by saying: "fear is a reaction to a specific threat while anxiety is unspecific, 'vague', 'objectless'". He goes on to state that "anxiety is the apprehension cued off by the threat to some value which the individual holds essential to his existence as a personality" (p. 191).

Howard (1983) notes that psychologists have debated the precise definition of anxiety for almost 80 years, and it is not likely that the debate will end soon. Levitt (1967, p. 7) points out: "The range of possible definitions [of anxietyl is, in principle, unlimited, and, in practice, very broad."

These authors continually mention the future orientation of anxiety as an important aspect of the phenomenon. This apprehension toward the future can be rational or irrational, permanent or transitory. When the apprehension is proportionate to the actual danger, the anxiety is considered to be rational or "normal". But, if the apprehension is not proportionate to the objective danger, then it is said to be irrational or "neurotic" (Howard, 1983).

Spielberger (1966) puts forth the idea that there are two major types of anxiety: trait anxiety and state (or
situational) anxiety. (Trait anxiety refers to the basic tendency in an individual to be anxious. This anxiousness is a personality characteristic that does not change significantly over time (Howard, 1983). It is a condition which exerts a constant influence on an individual's behavior (Levitt, 1967).

State anxiety, on the other hand, is a condition that varies in intensity and duration. It is not aimed at an individual's environment in general, as is trait anxiety, but rather towards a specific portion of that environment. Cambre and Cook (1985) note that the relationships between computer anxiety and state and trait anxiety need to be explored further and classified in order for computer anxiety to be accurately defined. An attempt will be made to do this in the present study.

In dealing with anxiety as it relates to computers, there are several names which researchers have used. Sanford Weinberg (as reported by Paul, 1982) considers fear of computers a phobia when it prohibits people from functioning normally where computers are concerned. True computerphobes (dubbed cyberphobes by Weinberg; Anderson, 1983; Business Week, 1982; Schwed, 1985) can be observed to suffer from the same symptoms that plague claustrophobes (individuals who fear enclosed spaces) and agoraphobes (individuals who fear open spaces). These symptoms can include nausea, sweaty palms and high blood pressure (Herdman, 1983). Technostress,
which was discussed earlier, is another name for this phenomenon.

In summary, computer anxiety is a real, albeit possibly irrational, condition. This condition may affect as much as thirty percent of the United States work force today (Paul, 1982). Any phenomenon which can have an adverse effect on such a potentially large percentage of the work force deserves attention. Efforts must be aimed at finding methods designed to limit its effects and thus increase organizational productivity.

Several studies have looked into the causes and correlates of computer anxiety. Jordan and Stroup (1982) developed a test to predict fear of computer use. Rohner (1981) developed a scale to test for computer anxiety in teacher education students. Maurer (1983) expanded the Rohner scale for use in the general population. Raub (1981) and Prell (1984) both used a sample of college undergraduates in studies of the correlates of computer anxiety. Dambrot, Watkins-Malek, Silling, Marshall, and Garver (1985) developed a scale to examine the gender differences in attitudes toward computers. Several of these studies were used as a foundation for the present study.

Individual attitudes toward computers

As Figure 5 shows, attitudes toward computers and computer anxiety influence each other through factors
internal to the individual. From this figure, it appears that a positive attitude toward computers should be related to a low level of computer anxiety, while a negative attitude would correlate with a high level of computer anxiety.

Exactly how a positive attitude towards computers is formed is a question that is not easily answered. Because of its two-way relationship with computer anxiety, it is difficult to postulate which comes first, computer anxiety or a negative attitude toward computers. (Howard (1983) and Raub (1981) speculate that computer anxiety causes an individual to have a negative attitude toward computers. This hypothesis raises the question of what causes computer anxiety. It is possible, however, that an individual's first experience with a computer, either direct or indirect (e.g., hearing about a co-worker's experience), can influence that individual's attitude toward computers and, through the other internal factors, affect the individual's level of computer anxiety. This theory is supported by Davidson and Walley (1985) who cite a case in which an employee refused to approach the computer again after an initial negative experience.

Figure 5. Relationship Between Computer Attitudes and Computer Anxiety (adapted from: Howard, 1983, p. 20)

Societal attitudes toward computers

While computers are quickly making themselves virtually indispensable in today's society, the acceptance of these revolutionary machines is by no means universal. A nonscientific study of the general public conducted by Ahl (1975) showed that while most people were optimistic about the benefits that computers can bring to society, nearly all of the adults in the study (91.6\%) felt that people cannot escape the influence of computers. This feeling of helplessness will be further addressed in the section of this study dealing with increased performance and stress.

Lichtman (1979) replicated Ahl's (1975) study using a sample of educators. This study showed that teachers were slightly more likely to blame computers for errors than were adults in the general public (72\% vs. 67\%). Teachers were also less likely than adults in the general public to agree that computers would improve education (64% vs. 87%). This may well be attributed to a fear on the part of the teacher of being replaced by a computer (this phenomenon will also be further discussed in the section on increased performance and stress).

Lee (1970), in a scientific study of the general public ($n=3000$), explored what computers mean to people as well as what general beliefs the public holds about computers. Erom this study, Lee concluded that there are two basic perspectives from which individuals look at computers. These are the "Beneficial Tool of Man Perspective", and the "Awesome Thinking Machine Perspective". Typical statements that characterized the "Beneficial Tool of Man Perspective" included; "They make it possible to speed up scientific progress and achievements." and "They will bring about a better way of life for the average man." Statements that characterized the "Awesome Thinking Machine Perspective" included; "Someday in the future, these machines may be running our lives for us." and "There is no limit to what these machines can do."

While these two perspectives are not exactly polar opposites (Lee views the "Awesome Thinking Machine Perspective" as not totally negative), they still show two widely differing views as to the usefulness and acceptability of computers in society. The actual data analyzed in this study are over twenty years old, and it would be highly interesting to replicate it in an effort to discern the changes in social attitudes toward computers brought about by the advent of the microprocessor. This task is, however, beyond the scope of the present study.

Danziger (1985) points out the fact that there is widespread ambivalence regarding computing:

On the one hand, the computer is presented as the great facilitator, loyal and tireless in its efforts to eliminate the drudgery of labor and to apply its genius to the service of rational life. On the other hand, the computer is ominous and threatening, the central artifact in a brave new world where human needs for individuality and privacy, for meaningful work, and for a sense of mastery over the environment are crushed. (p. 3)

Why are computers being seen as a threat to society by so many individuals "all of the sudden"? After all, computers have been in existence since the 1940s. Naisbitt
(1984) offers a possible answer to this question:

The reason is simple: its [the microprocessor's] widespread applicability. Earlier computer technology could be applied to some products, electronics, and large-scale office equipment, for example, but not others. Microprocessors can improve almost anything, and are consequently far more threatening. (p. 23)

Human Versus Machine

As we can see from Figure 4, the second set of factors to take into account on the road to a successful computerbased information system implementation is the Human vs. Machine characteristics of the implementation as they relate to individuals within the organization. When dealing with computer anxiety, it is important to consider the individual's level of involvement in the human/machine interaction. By simply existing, computers make many people uneasy. Some of these individuals are bothered by the fact that computers are capable of performing several hundred million calculations per second, thus vastly "out-thinking" humans. Cancro and Slotnick (1970) postulate that this resentment towards the computer is activated because individuals feel that the computer threatens their individual self-worth and uniqueness. This point is also brought out in Lee's (1970) study by individuals who hold to the "Awesome Thinking Machine Perspective" of computers. These individuals feel that computers downgrade humans in much the same way that people felt humans were downgraded when Darwin introduced his theories on natural selection and evolution in the 19 th century.

Computers in the work place

How do people react when they are confronted with computers in the work place? The reaction of course varies
with the individual and the situation, but definite patterns have been noted. According to Widmer and Parker (1983):

To some, the computer is a game, a marvel, an instrument to be explored and exploited. Others view the computer as a threat to their self-esteem and possibly their jobs. (p. 23)

Many employees feel that it is the company, and not themselves, that will benefit the most from the introduction of computer technology into the work place (The Wall Street Journal, 1983). (They feel that the computer will take away their jobs (Rubin, 1983), or else they feel that it is beneath them to use the computer (Capron \& Williams, 1984). This last symptom specifically affects middle and upper level managers who simply refuse to sit down at a computer keyboard. This may be true because of computer illiteracy. A 1981 study by Booz, Allen \& Hamilton, Inc. estimates that ninety percent of the middle managers and executives in the US today are computer illiterate (as cited by Business Week, 1982; Gardner, Render, Ruth \& Ross, 1985; Mitchell, 1983).

This "executive computer anxiety" has been divided into four distinct categories: fear of change, fear of typing, fear of failure, and fear of power loss (Small Business Report, 1984).) The group most susceptible to this type of computer anxiety is those individuals between the ages of 40 and 60. Executives younger than 40 have, for the most part, either had some exposure to computers or have accepted the fact that the computer will be important to their careers.

Executives over 60 have reached their present position without the direct aid of the computer, and they may feel that they will be able to complete their careers without having to work with computers. In an article by Zemke (1984), Richard Byrne states: "There are executives out there looking forward to their retirement with the idea that maybe they can avoid learning to do this [run a computer] by retiring in time" (p. 35).

These ideas are supported by Bralove (1983), who states "executives feel that sitting at a computer terminal illsuits the executive image" (p. 22). "Some executives responsible for running entire companies regard the idea of using a personal computer as either demeaning or a waste of time" (Fersko-Weiss, 1985, p. 68). Another major reason many executives resist direct use of the computer is that they may fear the loss of creative control in decision making. The computer provides structured, abundant data. Many executives prefer to make decisions with more ambiguous data, especially when their only justification for making the decision is the "gut feeling". If a decision proves to be the wrong one, and the information supplied by the computer does not support the decision, the executive may have to do a good deal of explaining to his/her superiors (Wrege, 1982).

Many firms are devising methods to combat computer anxiety in their upper level management. For example, Boston's First National Bank established a walk-in computer
center where executives can learn about computers and even take units home with them in order to work with them away from the prying eyes of underlings (Taylor, 1982).

One possible cause of computer anxiety in the work place may be "information 'overload' - too much technology too fast" (Raub, 1983, p. 16). Due to the rapid advances in computer technology, most individuals have not been able to keep up with the changes. Thus, individuals may feel that they are too far behind to catch up, and thus they become apprehensive and anxious.

Increased performance and stress

Levitt (1967) points out that stress is a term used frequently in reference to anxiety. Stress is an outward reaction caused by some internally perceived stimulus. In the context of the present study, it is the computer that brings on this stress.

Perrow (1983) notes that performance in organizations which make use of high technology systems can be improved in three ways:

1) by demanding higher skills and levels of performance from employees,
2) by reducing operating tasks to passive monitoring of semi-automated systems, or
3) by completely automating functions (this is referred to as "removing the man from the loop").

All three of these methods are possible contributors to computer anxiety.

Demands by management for higher employee skill levels tend to place increased levels of on the job stress on employees. This is true because from the perspective of management, higher skill levels go hand-in-hand with higher performance levels. As Gutman (1986, p. C9) notes: "Computer people don't go home early. They go home later. ... And when they do go home they take their work home with them". Riaz Khan and Schapira (1983) cite an instance where management took advantage of the increased productivity of a computerized clerical staff by increasing the staff's workload. This sort of manipulation by management can reinforce attitudes that automation is a no-win situation for the employee.

This management expectation of higher worker performance is what causes the increased stress as employees strive to meet the raised standards. When this happens, frustration can build in the employee, who may feel that his/her current performance is in line with current rewards, and does not feel that the expected performance increase is worth the perceived rewards for this increase. This is an operationalization of Vroom's (1964) Valence-InstrumentalityExpectancy (VIE) theory of employee motivation (as reported by Steers \& Porter, 1983). This employee frustration is, in turn, channeled toward the perceived cause of the stress;
i.e., the computer. Continued pressure from management creates more stress and frustration, and thus, a computer anxiety-stress cycle begins (see the section on Technostress). Johansson and Aronsson (1984) suggest that this stress can be lowered by reducing system response times and by eliminating pure data entry tasks, which can quickly become tedious and boring.

On the other hand, reduction of job duties to the level of monitoring semi-automated processes tends to cause individuals to lose self-esteem. Jokes from fellow employees about being an "errand boy for the computer", can bring about a loss of self-worth in a highly trained individual. Frustration and stress build from here.

Finally, being "removed from the loop" symbolizes the threat that employees fear the most when faced with impending automation: losing their jobs to a computer. Several studies (Ahl, 1975; Lee, 1970; Lichtman, 1979) point to this as a great fear (or cause of anxiety) on the part of individuals toward computers. The stress at this level is, obviously, the greatest, but, in any one of these three cases, the employee feels that he/she is the one who loses (The wall Street Journal, 1983).

Walton (1985) supports Perrow's (1983) arguments and goes even further by stating:

If the [implementation of the] technical system decreases skill requirements, the meaning of work may become trivial, and a loss of motivation, status, and
self-esteem may result. ... In some circumstances those who suffered counterattacked the system.

If the system increases specialization and
separates the specialty from interdependent activities, then jobs may become repetitive and isolated, and fail to provide workers with performance feedback. Such jobs produce alienation and conflict.

If the system increases routinization and provides elaborate measurements of work activity, job occupants may resent the loss of autonomy and try to manipulate the measurement system. The fact of measurement itself can put excessive pressure on individuals and can strain peer relationships. (pp. 559-560)

Confronted with a forced implementation situation, many individuals have a distinct feeling of helplessness, a feeling that the computer is in complete control of their working lives and destinies. In retaliation, some of these individuals, as noted by Walton (1985), lash out at the source of their frustration. Stories abound of employees working to undermine the computer. They include unconscious sabotage caused by not properly learning system procedures and policies (Brod, 1982), voluntary early retirement in order to avoid the stress brought on by having to learn how to use a computer late in the career (Schwed, 1985), and outright destruction of computer equipment (Capron $\&$ Williams, 1984; Howard, 1983). The present study addresses the issue of computer anxiety in an effort to find training methods designed to decrease the level of stress related to computer anxiety in individuals who are required to use computers in their jobs and thus increase overall
organizational productivity.

Ergonomics

Ergonomics is defined by Webster's New Collegiate Dictionary (1979, p. 384) as being "of or relating to biotechnology." Biotechnology is defined by the same source as "the aspect of technology concerned with the application of biological and engineering data to problems relating to man and the machine" (p 110). In other words, ergonomics is concerned with the actual physical interaction of people and machines, or in the present context, people and the computer.

The major ergonomic issues dealing with computers are the physical strains and hazards caused by the use of the computer. Chief among these hazards is concern over possible radiation leakage from video display terminals (VDTs). VDTs Comprise the bulk of computer output devices. Many individuals, such as travel agents and order entry clerks, work in front of a VDT eight hours a day. While there have been many government reports (e.g., Office of Finance and Management, 1984) showing no harmful side effects from the use of VDTs by workers, many groups (including unions), are still skeptical (Herdman, 1983).

In addition to VDT concerns, use of office furniture that is of poor ergonomic design can create problems in an information system implementation. More often than not, computer terminals are placed on the same desk that was used by the employee for typing or writing. This may force the employee into uncomfortable and harmful positions when they

Abstract

attempt to use the computer equipment. Common ailments reported include "swollen muscles and joints, sore shoulders, hand cramps, neck pressure, numbness, and back pain" (Herdman, 1983, p. 31).

The total physical environment in which a computer terminal is placed, comfortable desks, including easy to adjust chairs, and proper lighting, must be carefully planned to conform to individual needs. If these ergonomic concerns are not taken into consideration during the system implementation process, employees who may possess a good mental attitude toward using the computer may still turn away from its use due to the physical factors.

Training

Using the computer in some phase of the learning process has been referred to by many names. Computer-assisted instruction (CAI), computer-based education (CBE), computerbased instruction (CBI) and computer-based learning (CBL) are just a few of the terms used in the literature. For the purposes of this study, the author will use the term computer-based training (CBT).

CBT has become an integral part of modern training programs (Hultgren, 1984). It is predicted that by 1990, about 10\% of all training in industry will be some form of CBT, while by the year 2000, this number will increase to 50% (Selden \& Schultz, 1982). Still, recent research indicates
that as many as 50% of all corporate trainers have little or no experience in CBT (Training, 1985).

Figure 6 shows the potential for CBT in the way of time savings in training. Skill level percentage is plotted on the vertical axis (B), while time is plotted on the horizontal axis (A). From this figure, it is easy to see that CBT offers a distinct time advantage in training, especially at higher skill levels (greater than 50\%).

While the advantages of using the computer in the training process appear to be obvious, computer anxiety presents a roadblock because computer anxious individuals are likely to be unresponsive to a training program which integrates computers. As Raub (1983) points out: "Anxiety research has documented that when anxiety levels are high, concentration is low and learning is inhibited" (p. 17). Therefore, even with the great potential training time savings using CBT, wholesale adoption of this technology has not taken place. Some reasons for this include poor economic conditions, high front-end development and equipment costs, untested technology and resistance to change (Selden \& Schultz, 1982).

Figure 6. Potential for CBT (adapted from: Selden \& Schultz, 1982, p. 61)

Bloom (1985) puts forth the idea that computer anxiety is part of a larger cycle of an individual's thinking, feeling and acting, while non-anxious (productive) patterns of behavior also form a cycle. Bloom has developed these ideas into a model for helping individuals learn about computers with a minimum of anxiety. The two cycles and how they interrelate are presented graphically in Figure 7.

According to Bloom, it does not matter where either cycle starts, because the individual will remain there until the cycle is disrupted in some way.

Figure 7. The Vicious and Productive Cycles of Thinking, Feeling and Acting (Bloom, 1985, p. 91)

Computer anxious individuals find themselves caught up in the vicious cycle, which inhibits their ability to learn about the computer and lowers their confidence in learning to use the machine. Being caught in this cycle also moves the individual's attention away from learning and thus decreases the effectiveness of the training. Bloom proposes an "anxiety management" approach to computer training. This approach involves a program framework with three major elements: education, skill building, and practice. Bloom feels that this framework "can enhance the chances of breaking the vicious cycle patterns" (Bloom, 1985, p. 92).

In order to ensure the further adoption of CBT, continued research must be done in the field in order to confirm the findings of researchers such as Selden and

Schultz, and at the same time, find methods of reducing computer anxiety in individuals as they undergo CBT.

Personal Factors

According to Figure 4, the third set of factors which need to be taken into account when working toward a successful computer-based information system implementation consists of the Personal Factors. (One way to identify individuals who experience computer anxiety is to place them in front of a computer terminal and observe how they react. This solution has the obvious drawback of being inefficient. An organization cannot afford to indiscriminately hire or place people for jobs in which they must interact with a computer only to later discover that these individuals are unable to work efficiently with the system because they suffer from computer anxiety.
(A more feasible way to identify individuals who suffer from computer anxiety is to first identify correlates of the phenomenon. If computer anxiety can be related to easily identifiable variables, then the process of identifying sufferers of this affliction will be made easier. Once this identification is made, then the organization will be able to either train these individuals, or place them in jobs which do not require direct interaction with computers.) The following variables have either been shown by past research to be related to computer anxiety or show promise as possible
correlates and will be further researched in the present study: math anxiety, gender, exposure to and usage of computer technology, computer knowledge/experience, locus of control, state/trait anxiety, personality rigidity, selfesteem and powerlessness.

Math anxiety and gender

These two personal factors are closely tied together in the literature. Research on computer anxiety has its roots in the study of math anxiety (Howard, 1983). Math anxiety can be defined as an internally held belief that one cannot do well in math (Christiansen, 1982). Tobias (1978, p. 44) writes: "The first thing people remember about failing at math is that it felt like sudden death." She goes on to note that: "Paranoia comes quickly on the heels of the anxiety attack" (p. 45).

As opposed to the liberal arts, where creative solutions are encouraged, mathematics requires a "right" answer. The same is true of computers. While many systems are highly forgiving in their error processing, there is still a limited range of responses which a computer can be programmed to accept in any given situation.

Tobias (1978) states that there are three main myths about math anxiety:

1) math aptitude is a gift,
2) people who are able to do math do it instantly, and
3) math is a male domain.

Tobias' research has helped to dispel the first two of these myths. However, research has discovered a strong gender effect in math anxiety. In the same study, Tobias found that even though 49\% of all high school students were female, only 10\% take any elective math beyond geometry. Christiansen (1982) found that SAT math scores of males averaged 48 points higher than those of females. And now, as Bakon, Nielsen and McKenzie (1983) put it: "There is growing evidence that the long documented gap between male and female participation in elective math and physical science courses is now being replicated in computer labs" (p. 27).

This gender effect most likely finds its roots in the basic conditioning of children. Females are conditioned to believe that math is not important to their careers, and that computers are part of the male domain of math, electronics and machinery (Dambrot, Watkins-Malek, Silling, Marshall \& Garver, 1985). Women who excel in math are seen by many, females as well as males, as being unfeminine (Laws, 1979). This conditioning is furthered by the fact that women who fear math and computers assume others of their sex feel the same way they do, and that this fear is a normal condition (Dambrot et al.). Even in an area as seemingly innocuous as a video games arcade, the number of males involved vastly exceeds that of females (Christiansen, 1982).

Dale, as reported by Christiansen, 1982, argues that women tend to associate mistakes with being morally incorrect. They are therefore afraid to commit themselves to action when there is a significant possibility of making an error, which the process of mathematics requires. Men, on the other hand, are conditioned, by team and contact sports, to allow for incorrect decisions. Males also receive more support and pressure from significant others to succeed in areas involving math and technology than do females (Raub, 1981).

There is every reason to believe that people in general, and women in particular, who have had problems with math will find working with computers even more difficult and threatening because math and quantitative ability are integral parts of a computer science curriculum (Dambrot et al., 1985). Part of this assumption is supported by recent research. Prell (1984) reports a significant relationship between math anxiety and computer anxiety in both males and females ($x=.31, p \leq .01$ in each case). Dambrot et al. report similar results in the relationship between math anxiety and computer aptitude $(\underline{x}=.36, p \leq .001$ in males, and $x=.33$, p. 001 in females). The findings of Raub (1981) also fall in line with this general trend ($x=.29$, $\Omega \leq .001$). Neither Dambrot et al. nor Prell report a significant difference in levels of math anxiety between males and females. Raub's findings of the relationship between math anxiety and gender,
however, support the gender gap assumption $(x=.34$ for males, and $上=.21$ for females; $\mathbb{L} \leq .001$). To summarize, math anxiety is seen as a strong correlate of computer anxiety, and recent research is not conclusive as to the notion that females are more prone to suffer from it than males.

Exposure to and usage of computer technology

While it is true that it would be extremely difficult, if not impossible, for an individual to completely avoid computer technology in today's society, there are nonetheless different levels of exposure to the computer. Individuals with high levels of exposure could be characterized as owning or using personal computers in the home or work place, consistently using automatic teller machines (ATMs) to do their banking, or enjoying video games. Individuals with low levels of exposure, on the other hand, would not be involved in the above activities and would have a distinct disinterest in becoming involved with computer technology even if they were given the opportunity to do so. Sufferers of computer anxiety would presumably have a low level of exposure to computers and technology, while those who do not experience this affliction would have higher levels of exposure, or would indicate interest in receiving exposure.

Prell (1984) looked into the area of exposure to computers in relation to computer anxiety. Specifically, his study measured subject's self-reported levels of ATM usage
and frequency of video game playing. Neither of these factors proved to be significant predictors of computer anxiety, and therefore, they will not be measured in the present study.

Koester and Luthans (1979) found that individuals who have had very little direct exposure to computer technology were influenced to a greater extent by the computer and its output than by more traditional information forms, such as mimeographed data. Individuals with computer experience reacted differently. These individuals were more pessimistic about computer generated data when compared to the more traditional forms. This study suggests that the more exposure to computers an individual has, the less apt they are to hold the computer in awe (the "Awesome Thinking Machine Perspective"). By extrapolation, these individuals are less likely to suffer from computer anxiety, possibly, in part, because they do not see the computer as a threat to their control of decision making in the organization.

Computer knowledge/experience

The phrase "ignorance is bliss" does not apply to computers. With the increasing role computers are taking in our society, an individual can no more afford to be totally ignorant about computers and their capabilities than he/she can be functionally illiterate and still expect to be able to Eunction at an effective level in today's world.

But just as it is unnecessary for an individual to know how a carburetor - or a computer controlled fuel-injection system - works in order to drive a car, it is also unnecessary for that same individual to understand digital theory or binary arithmetic in order to take advantage of the benefits of computers. What is necessary is a basic knowledge of how computers work in order to understand, among other things, that when a "computer error" is made, a large percentage of the time it is due to some human error. Raub (1983) notes that computer anxiety can be caused by limited knowledge, and thus these fears may be based on misconceptions.

Individuals with even a rudimentary knowledge of computers and the way they work would most likely be less apt to suffer from computer anxiety. This is the case because they will understand the limitations as well as the capabilities of computers, that computers do not "think", nor are they "smarter" than humans. In other words, individuals with some knowledge of computers will not look at computers from the "Awesome Thinking Machine Perspective".

Locus of control

Locus of control is a concept developed by Rotter in 1966 to measure perceived control of reinforcement. This and Other measures were developed after researchers discovered that individuals reacted differently to success or failure
when the outcome of the task they were to perform was said to be due to either skill, i.e., factors internal to the individual, or chance, i.e., factors external to the individual (Lefcourt, 1981).

Past research (as cited by Lefcourt, 1981) has found that perceived control of reinforcement is positively associated with access to opportunity. Individuals who are given opportunities to attain valued positive outcomes are more likely to hold internal control expectancies than individuals who do not have access to these opportunities. Individuals who are deprived of such things as status holding positions, group memberships, etc., are often found to hold fatalistic, external control beliefs. Thus, some individuals have learned to believe that valued reinforcement occurs only by chance, and that they have no control over their fate, while others believe that they control their own fate (Lefcourt, 1982).

In this study, it is being postulated that locus of control enters into the discussion of computer anxiety because those individuals who hold external control perceptions (externals) should be more likely to suffer from computer anxiety than individuals who hold internal control perceptions (internals). This is true because externals would believe that they have no control over activities which involve computers. Internals, on the other hand, would
presumably feel that the computer is just another tool with which they can extend their own influence.

State/trait anxiety
As discussed in the section on computer anxiety, two forms of anxiety have been identified: trait anxiety (Atrait) and state anxiety (A-state) (Spielberger, 1966). Spielberger, Gorsuch, Lushene, Vagg and Jacobs (1983) postulated that individuals who are high in A-trait are more apt to exhibit A-state elevations than low A-trait individuals because these individuals see a broader range of situations as dangerous or threatening. If this is in fact the case, then it should also be true that those individuals who exhibit high A-trait should also be more likely to suffer from computer anxiety. This is true because high A-trait individuals are more anxious toward the environment in general, and therefore more likely to exhibit anxiety toward a specific part of their environment. It is being postulated in the present study that computer anxiety is actually an anxiety state. Therefore, individuals who suffer from computer anxiety should exhibit an A-state elevation when confronted with a situation in which they must make use of a computer

Personality rigidity

Rigidity is a concept developed by Rehfisch in 1958 to test for various personality characteristics. These characteristics included constriction and inhibition, intolerance of disorder and ambiguity, social introversion, and anxiety (Robinson \& Shaver, 1973). Individuals who score high on this scale (rigid) tend to be submissive, low in leadership qualities, unoriginal, and relatively deficient in cognitive and motivational factors associated with intellectual competence and achievement (Rehfisch, 1958).

Keeping in mind past research, the present study hypothesizes that individuals who score high on a personality rigidity test should be more likely to suffer from computer anxiety than those with low rigidity scores. This is because trait anxiety is one of the characteristics constituting rigidity. As discussed in the previous section, if an individual is more anxious in general, they will be more apt to suffer from anxiety towards a specific area, in this case, computers. Also, computers are perceived as being analytically oriented, and if rigid individuals are truly deficient in cognitive factors associated with intellectual Competence, then these individuals are more likely to fail in their experiences with computers.

Self-esteem
Self-esteem has been defined as a "liking and respect for oneself which has some realistic basis" (Robinson \& Shaver, 1973, p. 45). The construct examines attitudes toward the self. While this researcher is unaware of the use of this construct as a direct correlate of computer anxiety, it raises many interesting possibilities. If it is true that organizational automation can bring about a lowering of selfesteem (as discussed in the section on Increased performance and stress), then it is logical to assume that individuals who are low in self-esteem would tend to be more prone to suffer from computer anxiety than high self-esteem individuals. This would be the case if high self-esteem individuals are, in fact, more confident about themselves and their abilities than are individuals with low self-esteem. Thus, all other things being equal, high-esteem individuals should be less likely to fear computers.

Powerlessness

Powerlessness is a concept developed by Neal and Seeman in 1964. It is similar to Rotter's (1966) Locus of Control concept except for the fact that locus of control seeks to measure an individual's perceptions of control over his/her own life, while powerlessness measures "expectancies for control of events" with the events being in terms of society (Robinson \& Shaver, 1973, p. 260).

Several studies (Ahl, 1975; Lee, 1970; Lichtman, 1979) point to the fact that some individuals fear computers are taking over our society, and that no one will be able to stop them. It is quite possible that this fear of computer takeover contributes to computer anxiety. This could happen if an individual rationalizes: "Computers may take over everyone else, but they won't get me!" and thus, avoids computers because of his/her fear of them.

If the above assumption is correct, then by extrapolation, we may be able to theorize that individuals with high levels of powerlessness would be more apt to suffer from computer anxiety than those individuals with low levels of powerlessness (i.e., high power individuals).

METHODOLOGY

Sample

The subjects in this study were students in a mass lecture of an introductory level management course at Iowa State University. These students voluntarily participated in this study. They were compensated by receiving extra credit quiz points in the course. 199 students (105 males, 94 females) participated in Phase One of this study, and a subset of these (95-43 males, 52 females) participated in Phase Two.

Experimental Design

Figure 8 graphically depicts the design of the present study. In Phase One, the pre-test phase, the subjects were given a questionnaire battery incorporating the following scales: Fennema \& Sherman's (1976) Math Anxiety Scale, Rotter's (1966) Locus of Control Scale, Rehfisch's (1958) Rigidity Scale, Spielberger et al's. (1983) Trait Anxiety Inventory, Coopersmith's (1967) Self-Esteem Inventory, Neal and Seeman's (1964) Powerlessness Scale, Dambrot et al's. (1985) Computer Attitude Scale (CATT), Howard's (1983) Computer Knowledge Scale, Raub's (1981) Computer Experience Scale, and Maurer's (1983) Computer Anxiety Index (CAIN). At the same time, the following personal demographic data were collected: age, gender, self-reported math GPA and overall

GPA, an indication of the subjects' familiarity with Wordstar, and an indication of the subject's preferred mode of learning, with the choices being classroom lecture/demo or self-paced programmed (tutorial) learning.

PHASE ONE

Figure 8. Study Design

For Phase Two, the subjects with no knowledge of Wordstar were assigned to one of three groups. Group A was instructed in the use of Wordstar using a traditional classroom lecture/demo format. Group B was given the task of learning how to use Wordstar by using a modified version of a Wordstar tutorial program created by a staff member of the Computation Center at Iowa State University. Group C was used as a control group and did not participate in Phase Two.

Those subjects who were conversant with the Wordstar software also did not participate in Phase Two. Immediately after their training, the subjects in Groups A and B were tested on their level of state anxiety using Spielberger et al's.
(1983) State-Anxiety inventory. Subjects then were asked to use the word processor to edit a short manuscript provided by this researcher (see Appendix C). Subject performance in this task was measured by determining the number of errors made in the editing process, and the number of questions the subject asked the proctor during the task portion of Phase Two. These two measures were used as surrogate performance measures.

In Phase Three, the Post-Test phase, the Dambrot et al. (1985) Computer Attitudes Scale (CATT) and the Maurer (1983) Computer Anxiety Index (CAIN) were re-administered to all three groups, and the subjects who participated in Phase Two were asked to rate the possibility that they will continue to use the Wordstar software for their own needs.

Concepts

Figure 9 shows how each of the concepts highlighted in the model presented in Figure 4 were explored in the present study.

CONCEPT	MEASURED IN PHASE
Attitudes Toward Computers	One \& Three
Human vs. Machine	One, Two \& Three
Personal Factors	One \& Two
Successful Implementation	Three

Figure 9. Study Concepts

Instrumentation

Attitudes toward computers
Subjects' attitudes toward computers were measured during Phases One and Three of the study. Two scales were used to obtain this measure. The first scale administered was Dambrot et al.'s (1985) Computer Attitude Scale. This scale consisted of 20 statements, 9 positive and 11 negative, about computers. Each statement was rated on a five-point Likert-type scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). Scoring of this scale was done by reversing the points given to the positive items, and calculating an average score. Scores could fall in a range from 1 to 5 with a high score indicating a negative attitude toward computers. Dambrot et al. report an internal consistency reliability (coefficient α) of . 84 .

The second instrument used to determine attitudes toward computers was Maurer's (1983) Computer Anxiety Index. Maurer's scale has its roots in a study done by Rohner in 1981. Rohner was interested in developing a scale to measure computer anxiety in prospective teachers. The Rohner instrument consisted of 10 statements, some dealing with opinions about computers in general and others dealing specifically with the utilization possibilities of computers in the classroom. The subjects responses to these statements were recorded using a five-point Likert-type scale.

Maurer modified and expanded this scale into a 26 item index relating to general attitudes toward computers using a six-point Likert-type scale. A score for this scale was obtained by reversing the points given to the negatively worded statements and then taking an average of the 26 items. Possible scores were from 1 to 6, with a high score indicating high levels of computer anxiety. Maurer feels that this index is suitable for use with the general population and reports an internal consistency reliability (α) rating of .94 and a test/retest reliability of .90 .

Human versus machine

The human versus machine interaction characteristics of the present study were measured during each of the three phases. In Phase One, subjects were asked if they had any working knowledge of the word processing program Wordstar.

In addition, they were asked which type of learning situation they would prefer, a traditional classroom lecture/demo environment, or an individualized self-paced programmed learning environment.

The subjects were told that for the learning portion of the study (Phase Two) every effort would be made to match their preferences to the treatment group in which they were placed. In actuality, the selection of Group A and Group B for Phase Two was done as follows: First, the cases were sorted using the subject's score on the Dambrot et al. (1985) scale (Variable name DAMB-A), administered during Phase One. These sorted cases were then divided according to the subject's knowledge of Wordstar (Variable name KNOW2). Those subjects who reported either no knowledge (KNOW2 = 1) or limited knowledge (KNOW2 $=2$) of Wordstar were then randomly divided between Groups A and B. Those subjects with significant knowledge of Wordstar (KNOW2 = 3, 4, or 5) were not placed in either of these groups.

Group A ($\mathrm{n}=35$) was instructed in the use of Wordstar and a printer using a lecture/demo format. This instruction was performed by this researcher, who has an extensive background in computer software training. Group B $(\underline{n}=44)$ was given the task of learning how to use the same word processor by using a modified version of a Wordstar tutorial program created by a staff member of the Iowa State University Computation Center. Group B subjects' training on
the use of the printer consisted of a one page selfexplanatory hand out. The lecture/demo was designed to be a verbalization of the tutorial program.

Group C ($\mathrm{n}=16$) was used as a control and did not participate in Phase Two of the study. Group C was established by over-booking training sessions and not seating those individuals who had a score close to the median of the DAMB-A variable (neither computer anxious or non-anxious). These individuals who did not receive the training took the Phase Three Post-test immediately and then were dismissed.

During the training portion Phase Two, subjects were allowed to take as many notes as they wanted, and they were permitted to use these notes during the task portion of Phase Two. Specifically, the subjects in both groups were asked to enter a manuscript supplied by the researcher into Wordstar. First, subjects were asked to enter the document in the exact form given, and then to make the corrections indicated in the copy. The corrections required the subjects to demonstrate a good working knowledge of the software. The subjects were then asked to obtain a hard copy printout of their two versions of the manuscript. Subject performance was later evaluated by calculating the number of errors made transcribing the manuscript (the second version), and the number of questions asked of the proctor during the the completion of the task. The number of errors was the average number obtained from two separate raters. The correlation
between raters was .86. The number of questions were tallied by the proctor during the task portion of Phase Two. The existence of these performance measures was not reported to the subjects until the study was completed.

Personal factors

Nine instruments were used to determine personal factors. Eight of these scales were administered during Phase One of the study while the ninth was administered during Phase Two. The first scale was Rotter's 11966 , as cited by Robinson \& Shaver, 1973) Scale to Measure Internal Versus External Control. This scale consisted of 29 forcedchoice questions. Six of these items were "fillers", while the other 23 were operational internal versus external belief statements. Each respondent was asked whether they agreed or disagreed with each statement. Statements were coded such that a "0" indicated an internal locus of control and a "1" indicated an external locus of control. An average scale score was reported for each respondent. An estimated internal reliability (coefficient a) of .70 has been reported for this scale using a sample of college students (Robinson \& Shaver).

The second personal factor measured was personality rigidity. This was done by using Rehfisch's (1958, as cited by Robinson \& Shaver, 1973) Rigidity Scale. The original scale consisted of 39 true-false items, divided into 8
subscales. Of these, the following subscales were deemed inappropriate for the present study because they were not seen to pertain in any way to computer anxiety:
"Conservatism and conventionality" (8 items), "Misanthropy and parsimony" (3 items), "Emphatic concern with work and study" (2 items), and "Miscellaneous" (2 items). The remaining 24 items were used in the present study. Rigidity scores ranged from 0 to 1 , with 0 indicating low rigidity and 1 indicating high rigidity. Corrected split-half reliability for the original scale is reported to be . 72 (Robinson \& Shaver).

Coopersmith's (1967, as cited by Robinson \& Shaver, 1973) 27 item Self-Esteem Inventory measured the fourth personal factor. Respondents were asked to describe whether a series of statements reflecting self-esteem were "like me" or "unlike me". Responses were scored such that 0 indicated low self-esteem and 1 indicated high self-esteem. Coopersmith reports a . 90 split-half reliability among elementary school students for a longer version of the instrument (Robinson \& Shaver). Additionally, variants of the Inventory have been used successfully in occupational research (as cited by Cook, Hepworth, Wall, \& Warr, 1981).

Neal and Seeman's (1964) Powerlessness Scale was used to measure the fifth personal factor. The scale consists of seven forced-choice items. One point was scored for each powerless response and then an average score was calculated.

These scores range from 1 to 2. A split-half reliability of .70 is reported (Robinson \& Shaver, 1973).

In order to measure the subject's level of math anxiety, the Fennema and Sherman (1976) Math Anxiety Scale was used. This scale consisted of 12 statements, six negatively worded and six positively worded, which were rated using a fivepoint Likert-type scale with responses ranging from Strongly Disagree (assigned one point) to Strongly Agree (assigned five points). Points on the positive items were reversed and an average score was calculated. Scores could range from 1 to 5. The higher the score, the higher the subjects' level of math anxiety. A split-half reliability of .92 has been calculated for this instrument (Howard, 1983).

The sixth scale used in the variable of personal factors was Howard's (1983) Computer Knowledge Scale. This scale consisted of 10 objective questions about computers. Scoring involved assigning one point for each correct answer, thus, scores range from 0 to 10. According to Howard, construct validity of the test was established by the wording of the questions. No indication of reliability is reported by Howard.

Raub's (1981) Computer Experience Scale was used to evaluate the subjects' level of computer experience. This instrument consists of one six item scale with responses ranging from "I have no experience using a computer" to "I earn (or supplement) my living with my knowledge of computer
software or hardware". Scores on this scale range from 1 to 6.

The final scale used to measure personal factors was Spielberger et al.'s (1983) State-Trait Anxiety Inventory (STAI). This inventory actually consists of two instruments. The A-Trait inventory and the A-State inventory. Each instrument consisted of 20 statements, answered on a fourpoint Likert-type summated scale. The scoring was done by reversing points given to positive items and calculating an average score. Scores may range from 1 to 4, with a high score indicating high anxiety.

The A-Trait inventory measured trait anxiety, or an individual's normal level of anxiety, while the A-State instrument measured state anxiety, the level of anxiety an individual feels when confronted with a particular situation. The A-Trait instrument was administered during Phase One while the A-State instrument was administered right after the subjects were told about the manuscript transcription task in Phase Two.

Finally, the following self-reported information was collected during Phase One: age, gender, overall GPA, and math GPA.

Successful implementation

Identification of those who suffer from computer anxiety is a first step. However, the major question asked by
organizations is, "Can these individuals be treated so that they will become productive members of our organization?" The present study attempts to answer this question in Phases Two and Three.

In the first part of Phase Two, the subjects were divided into two groups in order to receive computer training. Group A received this training in a classroom environment (i.e., the lecture/demo treatment), while Group B received hands-on experience (i.e., the tutorial treatment). Because assignment to these groups was perfectly random, each group contained individuals who were computer anxious as well as individuals who were not.

In the latter part of Phase Two, after the subjects completed their assigned task, the number of questions they asked during the task, as well as the number of errors in the manuscript were determined. These ratings acted as a surrogate measure of how well they understood the training received.

In Phase Three, the computer attitudes scale of Dambrot et al. (1985) and Maurer's (1983) computer anxiety index were re-administered. Additionally, the subjects were asked to rate the possibility that they would again use Wordstar in light of the training they had received. The change in computer attitudes/anxiety from Phase One to Phase Three, as well as the subject's acceptance of the computer training (as
indicated by the subject's willingness to use Wordstar again)
served as indicators of the success of the training.

Research Questions

The following research questions will be addressed by this study:

1. Is computer anxiety more prevalent in females than in males?
2. Are "powerless" individuals more likely to suffer from computer anxiety?
3. Are individuals who display low levels of selfesteem more likely to suffer from computer anxiety?
4. Are individuals rated as external on Rotter's Locus of control scale more likely to have higher levels of computer anxiety than those rated as internal?
5. Are "rigid" individuals more likely to suffer from computer anxiety?
6. Is there any relationship between computer anxiety and math anxiety?
7. Is computer experience related to computer anxiety?
8. Are individuals who have more knowledge about computers less likely to to suffer from computer anxiety?
9. Is computer anxiety related to trait anxiety?
10. Is computer anxiety related to state anxiety?
11. Can computer anxiety be alleviated by training?
12. Does computer anxiety affect performance?

RESOLTS

Statistical Sumary

Table 1 gives the abbreviations for each variable used in the study. More complete information on the instruments can be found in Appendix A.

Table 1. Variable Abbreviations Used in Statistical Analysis

Table 2 is a summary of the statistics collected during the present study. The first phase of data analysis Consisted of obtaining alpha coefficients for each scale used. Note that the Powerlessness scale was found to be unreliable $(a=.39)$ and therefore was not used during the rest
of the analysis phase. All of the statistical analysis was performed using the Statistical Package for the Social Sciences (SPSSX). Program listings can be found in Appendix F.

Table 2. Descriptive Statistics

SCALE	\underline{N}	MEAN	SD	$\underline{\alpha}$	RANGE
DAMB-A	199	2.23	.45	.84	$1.15-3.60$
DAMB-B	95	2.27	.53	.88	$1.10-3.95$
MAU-A	199	2.55	.57	.92	$1.08-4.65$
MAU-B	95	2.55	.73	.96	$1.08-4.81$
STATE	79	2.00	.53	.99	$1.10-3.35$
TRAIT	199	1.87	.61	.92	$1.00-3.80$
MATH	199	2.59	.88	.96	$1.00-5.00$
EST	199	0.77	.17	.83	$0.00-1.00$
LOC	198	0.43	.17	.79	$0.09-0.78$
RIG	199	0.45	.19	.71	$0.04-0.96$
EXP	199	3.45	.93	$-\mathbf{a}$	$1.00-5.00$
HOW	199	4.66	2.23	.70	$0.00-10.00$
POW	199	0.46	.21	.38	$0.14-1.50$

aComputer Experience is a one item scale.

Eypothesis Testing

The research questions to be addressed during this study are listed in the Methodology section on page 57.

T-tests

Research question one asks whether computer anxiety is more prevalent in females than in males. In order to answer this question, a t-test was performed. Results from this analysis were mixed. Using the DAMB-A scale the male/female difference is significant $\left(M_{\text {males }}=2.16, M_{\text {females }}=2.31, \pm=\right.$ -2.42, $\mathrm{g} \leq .05$). However, significance was not found using

MAU-A, DAMB-B or MAU-B. These results would suggest there is no difference in computer anxiety between males and females. Interestingly, females in the sample were found to be more math anxious than males (Males $=2.45, M_{\text {females }}=2.75, t=$ -2.47, $2 \leq .05)$, which is consistent with previous research on math anxiety (Prell, 1984; Raub, 1981; Tobias, 1978).

Correlation analysis

Pearson product-moment correlations were used to evaluate research questions two through ten. A complete correlation matrix is shown in Table 3.

Rowerlessness and computer anxiety Research question
number two is, are "powerless" individuals more likely to
suffer from computer anxiety? As mentioned in the statistical summary, the Neal and Seeman Powerlessness instrument was found lack sufficient reliability for this analysis to be meaningful.

Self-Esteem and computer anxiety Research question number three asks are individuals who display low levels of self-esteem more likely to suffer from computer anxiety? The scale EST was found to be significantly correlated with all four measures of computer anxiety (DAMB-A: $x=-.25, \mathrm{p} \leq .001$; DAMB-B: $上=-.35, \mathrm{D} \leq .001 ; \mathrm{MAU}-\mathrm{A}: ~ \leq=-.20, \mathrm{Q} \leq .01 ;$ MAU-B: $\leq=$ -.21, $p \leq .05)$. Because a high score on EST indicates a high level of self-esteem, these significant negative correlations
Table 3. Pearson Correlation Coefficients

	damba	DAMBB	maua	mavi	trat	State	EST	10 C	RIg	ноw
damba	1.0000	.8380***	. 8342 ***	.8161***	.2776***	.5155***	-.2526**	.2053**	.2128**	-.2301***
DAMBb	. 8380 ***	1.0000	. $7587 \times * *$.9027***	.3229**	.5396***	-.3462**	.2599**	.2790**	-. 2047
mava	.8342***	.7587***	1.0000	.7930***	.2216**	.4837***	-.1978*	.2162**	.2280***	-.2132**
mavb	.8161***	.9027***	. $7930 * * *$	1.0000	.2152*	.4530***	-. 2056	.2483**	. 2388	-.2032*
trait	.2776***	.3229**	.2216**	.2152*	1.0000	.6454***	-.6355**	. $3637 * * *$. $4516 * * *$. 0653
state	.5155***	.5396***	.4837***	.4530***	.6454***	1.0000	-.5543**	.2760**	.4960***	-. 1201
EST	-.2526***	-.3462***	-.1978**	-.2056*	-.6355***	-.5543***	1.0000	-.3268***	-.4769***	-. 0843
LOC	.2053**	.2599**	.2162**	.2483**	.3637***	.2760**	-.3268**	1.0000	.1901**	-. 0861
RIg	.2128**	.2790**	.2280***	.2388*	.4516***	.4960***	-.4769**	.1901**	1.0000	. 1347
How	-.2301***	-.2047*	-.2132**	-.2032*	. 0653	-. 1201	-. 0843	-. 0861	. 1347	1.0000
MATH	.2338***	.3288***	.1702**	.2822**	.2309***	. 1727	-.1811*	.2704***	. 0900	-.2810**
EXP	-.2628***	-.2340*	-.2535***	-.2523**	-. 0120	-.2514*	. 0077	-. 1544	-. 0001	.5530***
quest	.3213***	.2489**	.3227***	.2102*	. 0555	.2829**	. 0562	. 0369	-. 0961	-.3087**
RATER1	. 0134	. 0896	. 0048	. 0675	. 1442	-. 0458	-. 1177	. 0817	. 1496	-. 0901
RATER2	. 0487	. 0991	. 0249	. 0781	. 1224	-. 1050	-. 0584	. 0536	. 0752	-. 1402
ERRORS	. 0325	. 0926	. 0156	. 0756	. 1385	-. 0793	-. 0909	. 0700	. 1160	-. 1199
NON-USAGE	. 0311	.1747**	. 0851	. 1480	.2195**	.2418*	-.1882*	. 1252	.1811*	-. 1610
	MATH	Exp	QUEST	RATER1-	Rater2	ERrors	non-usage			
damba	.2338***	-.2628***	.3213***	. 0134	. 0487	. 0325	. 0311			
dambi	. $3288 * * *$	-. 2340 *	.2489**	. 0896	. 0891	. 0926	.1747*			
mava	.1702**	-.2535***	.3227***	. 0048	. 0249	. 0156	. 0851			
maub	.2822**	-.2523**	.2102*	. 0675	. 0781	. 0756	. 1480			
trait	.2309***	-. 0120	. 0555	. 1442	. 1224	. 1385	.2195*			
State	. 1727	-.2514*	.2829**	-. 0458	-. 1050	-. 0793	.2418**			
EST	-.1811**	. 0077	. 0562	-. 1177	-. 0584	-. 0909	-.1882*			
LOC	.2704***	-.1544*	. 0369	. 0817	. 0536	. 0700	. 1252			
RIG	. 0900	-. 0001	-. 0961	. 1496	. 0752	. 1160	.1811*			
How	-.2810***	.5530***	-.3087**	-. 0901	-. 1402	-. 1199	-. 1610			
MATH	1.0000	-. $3236 * * *$. 0853	. 1495	. 1714	. 1666	.1931*			
EXP	-.3236***	1.0000	-.2932**	-. 1122	-. 1625	-. 1429	-. 0759			
QUEST	. 0853	-.2932**	1.0000	-. 2128	-. 1897	-. 2084	. 0376			
Rateri	. 1495	-. 1122	-. 2128	1.0000	.8606***	.9634***	.3451***			
RATER2	. 1714	-. 1625	-. 1897	.8606***	1.0000	.9656***	.3024***			
ERRORS	. 1666	-. 1429	-. 2084	.9634***	.9656***	1.0000	.3353***			
non-USAGE	1931*	$-.0759$	0376	3451***	3024***	$3353 * * *$	1.0000			

[^1]suggest that, for this sample at least, there is a negative relationship between individual self-esteem and computer anxiety. Meaning that low self-esteem subjects tend to be more computer anxious than high self-esteem subjects.

Locus of control and computer anxiety Locus of control, research question number four, was also found to be significantly related to all four computer anxiety scales (DAMB-A: $\mathrm{I}=.21 ;$ DAMB-B: $\mathrm{I}=.26 ;$ MAU-A: $\mathrm{I}=.22 ;$ MAU-B: $\mathrm{I}=$.25; $p \leq .01$ in all cases). These positive correlations support the contention that a strong belief in external control is associated with high computer anxiety. Thus, in this sample there is a significant positive relationship between an individual's locus of control and that individual's level of computer anxiety.

Rersonality rigidity and computer anxiety Research question number five, dealing with personality rigidity, shows significant correlations with all four computer anxiety
 MAU-A: $r=.23, \mathrm{p} \leq .001$; MAU-B: $\mathrm{r}=.24$, $\mathrm{D} \leq .05$). A high score on the scale RIG indicates high rigidity, consequently, a significant positive relationship between personality rigidity and computer anxiety was reported for this sample.

Math anxiety and computer anxiety Research question number six investigates the relationship between math anxiety and computer anxiety. This proposed relationship is supported by significant correlations between math anxiety
and all four computer anxiety measurements (DAMB-A: $x=.23$, Q S.001; $\mathrm{DAMB}-\mathrm{B}: \mathrm{I}=.33, \mathrm{p} \leq .001 ; \mathrm{MAU}-\mathrm{A}: \mathrm{I}=.17$, $\mathrm{p} \leq .01$; MAU-B: $工=.28, ~ \leq .01)$. Thus, a significant relationship between individual math anxiety and computer anxiety is supported for this sample.

Computer knowledge/experience and computer anxiety The variables computer knowledge and computer experience as expressed in research questions number seven and eight, were both found to be significantly correlated with computer anxiety in this study. Table 4 shows these correlations.

Table 4. Computer Knowledge/Experience Correlations

	DAMB-A	DAMB-B	MAU-A	MAU-B
EXP	-. 26 ***	-. 23*	-. 25 ***	-. 25 **
HOW	-. 23 ***	-. 20 *	-. 21 **	-. 20 *

These negative correlations are consistent with the hypothesis that a higher knowledge of computers or a higher level of computer experience should be associated with lower levels of computer anxiety. These results suggest, in answer to research question seven, that there is a significant relationship between an individual's level of computer knowledge/experience and that individual's level of computer anxiety. EXP was also significantly correlated to the number of questions asked during the assigned task ($x=-.29$, $\mathrm{p} \leq .01)$, MATH ($x=-.32, \mathrm{p} \leq .001$), and HOW ($x=.55, \mathrm{p} \leq .001$).

State/trait anxiety and computer anxiety Research questions nine and ten address the issue of the correlation between computer anxiety and state and trait anxiety. As Table 5 shows, state and trait anxiety were correlated with all four computer anxiety measures.

Table 5. State/Trait Anxiety Correlations

	DAMB-A	DAMB-B	MAU-A	MAU-B
State	N/A	. 54 ***	N/A	.45***
TRAIT	. 28 ***	. 32 **	. 22 **	. 22 *

Continued usage Research question eleven asks whether or not computer anxiety can be treated by training. A surrogate measure of computer anxiety treatment in the present study is the variable NON-USAGE. This variable measures subject's intention to use Wordstar again in light of their training. A high score on this variable indicates a low likelihood of continued Wordstar usage. As shown in Table 6, NON-USAGE correlated with Phase Two computer anxiety (DAMB-B and MAU-B), trait anxiety (TRAIT), state anxiety (STATE), personality rigidity (RIG), math anxiety (MATH) and number of errors in the task manuscript (ERRORS). From these correlations, we see that continued Wordstar usage, for this sample, is closely related to an individual's anxieties. The higher these anxieties, the less likely the subject was to use Wordstar again. Subjects with an external locus of
control belief or rigid personalities were also less likely to use Wordstar again. Additionally, NON-USAGE correlated with the number of errors in the manuscript, with those subjects committing a high number of errors being less likely to use Wordstar again.

Table 6. NON-USAGE Correlations

DAMB-B	.17**
MAU-B	.15a
TRAIT	. 22 **
State	. 24 *
MATH	.19*
ERRORS	. $34 * * *$

${ }^{2} \mathrm{p} \leq .08 \quad * \mathrm{p} \leq .05 \quad \star * \mathrm{p} \leq .01 \quad * * * \mathrm{p} \leq .001$.

Regression analysis

The third phase of statistical analysis involved derivation of regression equations using all of the personality variables and demographics obtained in Phase One of the study, as well as the state anxiety measure and the treatment group assignment, from Phase Two, as predictor variables in predicting Phase Two computer anxiety scores. Table 7 shows the equations obtained. Next, Phase One computer anxiety was allowed to enter into the equations as a possible predictor. The resulting equations are shown in Table 8.

Table 7. Regression Analysis One (Without Phase One computer anxiety as a predictor variable)

DEPENDENT VARIABLE: Phase Two computer anxiety (DAMB-B)
$R^{2}: .34$ adjusted $R^{2}: .32$

PREDICTOR VARIABLE(S):

	b	T	Sig T
State Anxiety (STATE)	. 50	5.18	$\mathrm{p} \leq .001$
Math Anxiety (MATH)	. 23	2.34	$p \leq .05$
DEPENDENT VARIABIE: Phase Two computer anxiety (MAU-B)			
$\mathrm{R}^{2}: .25$ adjusted R^{2} :	. 23		
PREDICTOR VARIABLE (S) :			
	b	I	Sig T
State Anxiety (STATE)	. 42	4.09	$\mathrm{p} \leq .001$
Math Anxiety (MATH)	. 21	2.11	$\mathrm{p} \leq .05$

DEPENDENT VARIABLE: Number of Questions asked during assigned task (QUEST)
$R^{2}: .44$ adjusted $R^{2}: .40$
PREDICTOR VARIABIE (S):

	b	T	Sig.T
Treatment Group (GROUP)	-.43	-4.78	ps.001
Computer Knowledge (HOW)	-.23	-2.47	$\mathrm{p} \leq .05$
State Anxiety (STATE)	.45	4.04	$\mathrm{p} \leq .001$
Self-Esteem (EST)	.34	3.00	$\mathrm{p} \leq .01$
Gender (SEX)	.26	2.81	$\mathrm{p} \leq .01$

DEPENDENT VARIABLE: Continued Wordstar usage (NON-USAGE)
$R^{2}: .08$ adjusted $R^{2}: .07$
PREDICTOR VARIABLE (S):
State Anxiety (STATE) $\quad \underline{b} \quad \underline{T} \quad$ SigT

Rredicting computer anxiety of all the measures obtained during the present study, only two were found to be significant predictors of computer anxiety. These were state anxiety and math anxiety. Even though state and math anxiety were strong predictors of computer anxiety, there still is, in the best case, 66 percent of unexplained variance. Thus, while these two constructs are a start, there is room for a good deal more research in predicting computer anxiety.

Predicting number of questions Computer knowledge, treatment group, gender, and two personality characteristics entered into an equation which predicted almost 50 percent of the variance in the number of questions asked by subjects during completion of the assigned task. Computer knowledge was the strongest predictor, with a t-value of -2.85. This negative relationship between QUEST and HOW is consistent with the idea that the more that an individual knows about the computer to begin with, the fewer questions he/she will ask. Treatment group also had a negative relationship with number of questions asked. This implies that subjects in the lecture/demo group asked more questions than those in the tutorial group. Females in the sample were found to ask more questions than males. This difference was significant ($t=$ -2.82, $\mathrm{p} \leq .01$). State anxiety also enters into the equation, with the highly anxious asking more questions. Additionally, individuals with high self-esteem asked more questions than individuals with low self-esteem.

Predicting continued_usage State anxiety was the only variable to predict continued usage. Individuals with a high level of state anxiety were more apt to indicate that they would not use Wordstar again than those individuals with an internal control belief. The low R square value (.08) signifies that, for this sample, none of the predictor variables collected were adequate in predicting continued usage.

For the previous analysis, Phase One computer anxiety scores were intentionally left out of the list of predictor variables. This was done because a priori reasoning was that pre-experiment computer anxiety would be the strongest predictor of post-experiment computer anxiety, number of questions asked, and expression of continued usage. Table 8 shows the equations obtained when Phase One computer anxiety scores were allowed into the equations. This analysis was done in order to address issues of multicollinearity. As expected, Phase One computer anxiety was a significant predictor in all four of the equations.

Table 8. Regression Analysis Two (With Phase One computer anxiety as a predictor variable)

DEPENDENT VARIABLE: Phase Two computer anxiety (DAMB-B)			
R^{2} : . 73 adjusted R^{2} :			
PREDICTOR VARIABLE (S) :			
		I	Sig T
Phase One computer anxiety (DAMB-A)		14.23	$p \leq .001$
DEPENDENT VARIABLE: Phase Two computer anxiety (MAU-B)			
R^{2} : . 70 adjusted R^{2} :			
PREDICTOR VARIABLE (S) :			
	b	T	Sig_T
Phase One computer anxiety (MAU-A)	$.80$	12.34	$p \leq .001$
Math Anxiety (MATH)	. 15	2.24	$\mathrm{p} \leq .05$
DEPENDENT VARIABLE: Number of Questions asked during assigned task (QUEST)			
$\mathrm{R}^{2}: .39$ adjusted R^{2} :	. 36		
PREDICTOR VARIABLES:			
	b	T	Sig T
Treatment Group (GROUP)	-. 38	-4.11	$\mathrm{p} \leq .001$
Computer Knowledge (HOW)	-. 29	-3.05	$\mathrm{p} \leq .01$
Phase One computer anxiety (MAU-A)	. 29	3.13	$\mathrm{p} \leq .01$
Gender (SEX)	. 23	2.42	$\mathrm{p} \leq .05$
DEPENDENT VARIABLE: Continued Wordstar usage (NON-USAGE)			
$\mathrm{R}^{2}: .23$ adjusted R^{2} :	. 20		
PREDICTOR VARIABLES:			
	b	T	Sig T
Phase One			
computer anxiety (DAMB-A)	-. 42	-3.88	$p \leq .001$
Computer experience (EXP)	. 29	-2.61	$\mathrm{p} \leq .05$
Treatmen Group (GROUP)	. 25	-2.45	$\mathrm{p} \leq .05$

Predicting computer anxiety In predicting Phase Two computer anxiety, only the equivalent Phase One scale was used (i.e., DAMB-A was used to predict DAMB-B). As shown in Table 8, Phase One computer anxiety is the strongest predictor of Phase Two computer anxiety ($t_{\text {DAMB-A }}=14.23$, 모.001; $t_{\text {MAU-A }}=12.34, \mathrm{p} \leq .001$). The entry of Phase One computer anxiety eliminated math anxiety from the DAMB-B equation while it eliminated state anxiety and entered math anxiety into the MAU-B equation. Additionally, R square rose greatly in both equations (from . 34 to . 73 in DAMB-B and from .25 to . 70 in MAU-B).

Predicting number of questions Both Phase One computer anxiety measures (DAMB-A and MAU-A) were allowed to enter into the equation predicting the number of questions asked. Only MAU-A proved to be significant. Entry of this variable eliminated state anxiety and self-esteem from the equation. Treatment group, computer knowledge, and gender entered into the equation. R square remained fairly consistent (. 44 with vs. . 39 without).

Predicting continued usage Both Phase One computer anxiety measures (DAMB-A and MAU-A) were allowed to enter into the equation predicting continued usage. Only DAMB-A proved to be significant. Entry of this variable eliminated state anxiety from the equation, allowed computer experience and treatment group to enter the equation, and raised R square from . 08 to . 23 .

From this analysis, it is clear, for this sample at least, that computer anxiety is an anxiety state, and that it is possible that there is a certain degree of multicollinearity between computer anxiety and state anxiety, math anxiety, self-esteem, and locus of control.

Analysis of variance

In order to answer research questions eleven and twelve, analysis of variance was used.

The ANOVAs performed consisted of a series of $2 \times 2 \times 2$ factorial designs. The independent factors operationalized were type of training (lecture/demo or tutorial), a preexperiment computer anxiety measure (split at the median), and the variable CHOICE. CHOICE reflects the extent to which subjects' Phase One preference for training group (variable name: DEM3) matched the training group to which they were actually assigned (i.e., lecture/demo or tutorial). Thus, CHOICE is a dichotomous variable; either MATCHED if preference and actual assignment were the same, or UN-MATCHED if they were not. Dependent variables in the analyses of variance were number of errors made in the assigned task (ERRORS), number of questions asked during completion of the assigned task (QUEST), self-reported intent of continued usage of Wordstar (NON-USAGE), and post-experiment computer anxiety measures ($D A M B-B$ and $M A U-B$).

In the first step of the analysis of variance phase, a multivariate analysis of variance was performed in an effort to ascertain whether or not there was any justification for continuing with univariate analysis. Because two instruments were used in this study to measure computer anxiety, separate ANOVAS were run using DAMB-A and MAU-A as measures of the independent variable computer anxiety/attitudes. Figure 10 shows the manner in which subjects were distributed among the training groups. Tables 9 and 10 present a summary of MANOVA results for $D A M B-A$ and $M A U-A$, respectively.

	DAMBROT ET AL. (1985) CATT MEDIAN $=2.20$		
GROUP	LOW CA	HIGH CA	$\begin{array}{r} \text { ROW } \\ \text { TOTAL } \end{array}$
LECTURE/ DEmo	17	18	$\begin{array}{r} 35 \\ 44.38 \end{array}$
tUTORIAL	25	19	$\begin{array}{r} 44 \\ 55.6 \% \end{array}$
COLUMN	42	37	79
total	53.2\%	46.8\%	100.0\%
	MAURER MEDIA	$\begin{aligned} & \text { 13) CAIN } \\ & 2.54 \end{aligned}$	

GROUP	LOW CA	HIGH CA	$\begin{array}{r} \text { ROW } \\ \text { TOTAL } \end{array}$
LECTURE/	18	17	35
DEMO			44.3\%
TUTORIAL	22	22	44
COLUMN	40	39	79
TOTAL	50.6\%	49.4%	100.0\%

Figure 10. Phase Two Cross Tabulations

Abstract

MANOVA As shown in Tables 9 and 10, MANOVA results demonstrated significant main effects for computer anxiety (DAMB-A, MAU-A) and the type of training group on the dependent variables. When computer anxiety was operationalized using MAU-A, there was a significant interaction effect between computer anxiety and GROUP, as well as a three-way interaction between MAU-A, GROUP, and CHOICE. The exact nature of these effects is evidenced in the ANOVA analysis that follows.

Table 9. Dambrot et al. (1985) CATT MANOVA Summary ($n=76$)

Sources of Variation

MAIN EFEECTS

DAMB-A
GROUP
CHOICE
(E-Value)
11.556***
2.948*
0.355

TWO-WAY INTERACTIONS

DAMB-A X GROUP	1.588
DAMB-A X CHOICE	1.066
GROUP X CHOICE	0.617

THREE-WAY INTERACTIONS
DAMB-A X GROUP X CHOICE 0.947

* $\mathrm{D} \leq .05 \quad$ *** $\mathrm{D} \leq .001$.

ANOVA Both pre-experiment computer anxiety measures demonstrated main effects for number of questions asked and the two post-experiment computer anxiety measures. Subjects
with a higher level of computer anxiety asked more questions than those with a low level of computer anxiety ${\left(M_{\text {HIGH DAMB-A }}=\right.}=$ 7.41 vs. $M_{\text {LOW DAMB-A }}=4.54, \mathrm{p} \leq .01 ; \mathrm{M}_{\mathrm{HIGH} \text { MAU-A }}=7.38$ vs. $\mathrm{M}_{\text {LOW MAU-A }}$ $=4.32$, $\mathrm{p} \leq .001$). In addition, subjects with high preexperiment levels of computer anxiety tended to have higher levels of post-experiment computer anxiety than did subjects with low levels of pre-experiment computer anxiety ($M_{\text {HIGH DAMB-A }}$ $=2.62$ vs. $M_{\text {LOW DAMB-A }}=1.88, \mathrm{p} \leq .001 ; \mathrm{M}_{\mathrm{HIGA}} \mathrm{MAU}-\mathrm{A}=2.93$ vs. $\mathrm{M}_{\text {LOW }}$ $\mathrm{MAU}_{\mathrm{A}}=2.05, \mathrm{p} \leq .001$).

```
Table 10. Maurer (1983) CATT MANOVA Summary
(n=76)
```

Sources of Variation
(F-Value)

MAIN EFFECTS

MAU-A	$9.533 \star \star \star$
GROUP	2.311^{a}
CHOICE	1.131

TWO-WAY INTERACTIONS

MAU-A X GROUP	2.126^{b}
MAU-A X CHOICE	1.377
GROUP X CHOICE	0.414

THREE-WAY INTERACTIONS
MAU-A X GROUP X CHOICE 2.292°
$a_{D} \leq .06 \quad b_{D} \leq .08 \quad c_{D}=.056 \quad * * * x_{Q} \leq .001$.

Training group demonstrated a main effect for number of errors in the assigned task and number of questions asked
while completing the task. Subjects in the tutorial training group had more errors than subjects in the lecture/demo group ($M_{\text {Lecture/demo }}=2.29$ vs. $M_{\text {Tutorial }}=3.65, \mathrm{p} \leq .05$). Subjects exposed to the lecture/demo method of learning Wordstar asked more questions during completion of the task than those who learned the use of the program by tutorial $\left(\mathrm{M}_{\text {LECTURE/DEMO }}=7.65\right.$ vs. $\mathrm{M}_{\text {TUTORIAL }}=4.69, \mathrm{p} \leq .05$).

The two-way interaction of pre-experiment computer anxiety and CHOICE was significant for the number of errors in subject's manuscripts. This interaction ($E_{\text {DAMB-A }}=4.13$; $\left.\mathrm{E}_{\mathrm{MAU}-\mathrm{A}}=4.90, \mathrm{p} \leq .05\right)$, shows that highly anxious individuals had fewer errors when they matched their request with their actual treatment group (see Figure 11).

Figure 11. Two-Way Interactions on ERRORS

Finally, when computer anxiety is operationalized using MAU-A, there is a significant three-way interaction between MAU-A, GROUP, and CHOICE for NON-USAGE and MAU-B ($E_{\text {non-USAGE }}=$ 4.51; $E_{\text {MAU-B }}=5.22, \mathrm{D} \leq .05$). These interactions are shown in Figures 12 and 13. Complete ANOVA summaries can be found in Tables 11 and 12.

Table 11. Dambrot et al. (1985) CATT ANOVA Summary ($\mathrm{n}=76$)

While the main effect for MAU-A on MAU-B shown in Table 10 suggests that MAU-A can be used as a predictor for MAU-B, the three-way interaction effect (MAU-A X GROUP X CHOICE) presents a modified picture. This interaction ($\mathcal{E}=5.22$, pS.05) is depicted in Figure 12. Generally, subjects initially reporting low computer anxiety levels (MAU-A) tended to report significantly lower post-experiment computer anxiety (MAU-B) levels than did subjects initially classified
as highly computer anxious. However, subjects who asked for and received lecture/demo format for training reported no statistically significant difference in their post computer anxiety scores (MAU-B) ($t=.97, \underline{L} \leq .361$). This result would suggest that pre-experiment (MAU-A) computer anxiety can be used as a predictor for post experiment computer anxiety (MAU-B) except for those subjects who requested and received the lecture/demo method of instruction.

Table 12. Maurer (1983) CAIN ANOVA Summary ($\mathrm{n}=76$)

Sources of Variation	$\begin{aligned} & \text { ERRORS } \\ & \text { (F-value) } \end{aligned}$	QUESTIONS (F-value)	NON-USAGE (F-value)	$\begin{gathered} \text { DAMB-B } \\ \text { (F-value) } \end{gathered}$	$\begin{gathered} \text { MAU-B } \\ (F-\text { value }) \end{gathered}$
MAIN EFFECTS	1.205	8.312***	1.853	12.604***	14.611***
MAU-A	0.054	11.351***	$5.321 *$	35.174***	41.935***
GROUP	$3.614^{\text {a }}$	9.820**	0.499	0.916	2.668
CHOICE	0.019	0.604	0.013	$3.290{ }^{\text {b }}$	1.823
TWO-way interactions	1.751	1.695	1.003	2.101	1.378
MAU-A X group	0.228	3.118	0.404	4.541*	1.605
MAD-A X CHOICE	4.895*	0.820	1.206	1.409	1.753
group X CHOICE	0.577	1.174	1.004	0.013	0.355
THREE-WAY INTERACTIONS MAD-A X GROUP X CHOICE	1.071	2.861	4.509*	2.107	5.223*

This conclusion is supported by the other significant three-way interaction; that of MAU-A X GROUP X CHOICE on NONUSAGE. The main effect of MAU-A on NON-USAGE ($E=5.32$, pS.05) suggests that those individuals with high preexperiment levels of computer anxiety are less likely to
continue using the software after training than those with
 1.93). This is the case except, once again, for those individuals who received their treatment group request for lecture/demo based training. In the case of these subjects, the subjects with high levels of MAU-A were more likely to say that they would again use Wordstar than those with low levels of MAU-A ($M_{\text {LOW MAU-A }}=1.83$ vs $M_{\text {HIGG MAU-A }}=1.50$) note these differences were not significantly different ($1=.97$, $p=.361$). This could possibly be due to the limited sample size of this subgroup ($n=18$) (see Figure 13).

Figure 12. Three-Way Interactions on MAU-B

Because there were main effects between Phase One and Phase Two computer anxiety scores in all cases, there is sufficient reason to assume that there is a significant
relationship between an individual's Phase One and Phase Two levels of computer anxiety.

With respect to performance, the main effects reported in both the MANOVA and ANOVA steps present enough evidence there is a significant relationship between training method and the number of question a person will have while performing a computer related task. However, insufficient evidence exists to conclude that one training method is better than another in reducing errors.

Figure 13. Three-Way Interactions on NON-USAGE

DISCOSSION

High technology and computers are here to stay. The organization that does not automate runs the risk of losing its competitive edge in the marketplace. The phenomenon of computer anxiety presents an obstacle to organizational automation. This obstacle must be overcome in order for computers to completely fulfill their promise. (Selden and Schultz (1982) predict that by the turn of the century, fifty percent of all industrial training will be computer based. This, combined with the fact that computers can be completely effective only when they are integrated into systems in which humans play an instrumental role, argues for increased research into computer anxiety. The purpose of the present study was to take a step towards the understanding and alleviation of computer anxiety. The results from this study point to some possible answers as to what computer anxiety is, and how it can be treated.

Study Findings and Implications

Interestingly, computer anxiety was not found to be related to gender. While this finding is consistent with Rohner (1981), studies by Raub (1981) and Prell (1984) found females to be significantly more computer anxious than males. The fact that this was not the case in the present study can
be partially explained by the fact that the present study uses different instruments to measure computer anxiety/attitudes than did the Raub or Prell studies. Both Raub and Prell used a scale developed by Raub as a measure of computer anxiety. The present study used two separate computer anxiety/attitudes measures; the Dambrot et al. (1985) and the Maurer (1983) scales. Problematic is the fact that the Dambrot et al. study found gender effects. While the present study did find a gender effect in the DAMB-A variable (Phase One computer anxiety using the Dambrot et al. measure), the weight of the evidence in this present sample suggests no gender effects for computer anxiety exist. If the findings of the present study can be replicated, it might be discovered that computer anxiety is not gender related, contrary to what previous research has suggested.

Another possible explanation for the conflicting gender effects findings is that the Raub (1981) scale may be measuring a slightly different construct than the Dambrot et al. (1985) and Maurer (1983) scales. This statement is made in light of the correlation between math anxiety las measured by the Fennema and Sherman Math Anxiety Scale) and computer anxiety in the Raub and Prell (1984) studies and the present study. In the Raub study, math anxiety was found to be correlated with computer anxiety at $x=.29$ ($p \leq .001$). In the Prell study, the math anxiety, computer anxiety correlation was $I=.30$ ($\mathrm{g} \leq .01$). For the present study the math anxiety,
pre-experiment computer anxiety correlations were as follows: DAMB-A, $\mathrm{I}=.23$ (p S.001); MAU-A, $\mathrm{I}=.17$ ($\mathrm{L} \leq .01$). Thus, the Raub scale seems to be measuring something closer to math anxiety than either the Dambrot et al. or the Maurer scales. The gender effects in math anxiety have been shown in the present study as well as in the Raub and Prell studies.

Results from the present study show computer anxiety to be associated with several personality factors, including self-esteem, locus of control, personality rigidity, and trait anxiety. These findings are consistent with results obtained by Prell (1984), who used locus of control, personality rigidity and math anxiety as personality factors in his study.

The analysis of variance findings show that the type of training had a significant effect on the number of errors committed during the assigned task. Those highly anxious individuals who received the type of training they asked for committed fewer errors than the highly anxious subjects who did not have their treatment group request honored. Training method also affected the number of questions asked during completion of the assigned task, with those individuals in the lecture/demo group asking more questions than those trained by the tutorial. These results suggest that the type of training may have to be different for computer anxious people, e.g., trainees should be allowed to choose the method
of training when at all feasible, and a sufficient amount of time must be allowed for questions during the training.

Bloom's (1985) anxiety management approach to computer based training, which involves a framework of education, skill building, and practice, was not used in the present study. This is due, in part, to the time constraint. However, the major reason it was not used is because of a lack of expertise in this area of training.

Regression analysis showed computer anxiety to be related to state anxiety and math anxiety, with these two predictors explaining as much as 36% of the variance in computer anxiety (using the Dambrot et al., 1985, CATT). Multicollinearity among these two predictors and self-esteem, locus of control, and personality rigidity may explain why these latter variables did not enter into the regression equation, even though they each were significantly correlated with computer anxiety.

These correlation and regression findings would seem to indicate that computer anxiety is related to certain personality traits. While it is true that computer anxiety was found to be related to computer knowledge and computer experience - two factors that are more a function of prior experience as opposed to a personality factor - these correlations on the whole were lower than those of the personality factors (see Table 3, p. 60).

The results of this study suggest that computer anxiety is more likely a function of the immediate situation faced by an individual than a function of the environment in general. Stated differently, computer anxiety as a form of anxiety is probably more of a manifestation of state anxiety as opposed to trait anxiety. This statement is made in light of the regression analysis in which state anxiety is the strongest predictor of computer anxiety (see Table 7, p. 65). This supposition is in keeping with Spielberger's (1966) statement that state anxiety is aimed toward a specific portion of the environment, as opposed to the environment as a whole. This finding is important because, as noted by (Howard, 1983), trait anxiety does not change significantly over time. If computer anxiety is in fact an anxiety state, there is a chance that it can be treated. Although the present study was unable to establish any results pointing to the idea that computer anxiety per se can be treated, the results of this study imply that its effects may, in fact, be minimized through proper training.

Limitations of the Study

The test, treatment, re-test design of this study facilitated the investigation of the effects of exposure to computers on levels of computer anxiety. However, the study design did not allow for the discovery of what type of state anxiety computer anxiety actually is (state anxiety types
will be discussed in the section on future research). In addition, the fact that during the training phase of the study the lecture/demo was simply a verbalization of the tutorial program may not be externally valid. While the decision to do this was made in order to prevent study contamination, it is assumed that a computer tutorial written for an organization would be specifically tailored to the computer system involved.

Along these same lines, the time constraints imposed by the university environment forced the training phase of the present study to be relatively short. Presumably, individuals in organizations would be trained for more than one hour before they are expected to be productive with the computer. If a more in depth study - in terms of time could have been performed, perhaps post-experiment computer anxiety scores would have been significantly lower than preexperiment levels.

In deciding what software package to use for the training phase of this study, the main effort was placed on finding a package that could be easily learned in a limited amount of time and could be taught using either lecture/demo or tutorial. When these criteria were combined with the limited software available at Iowa State University, Wordstar was found to be the only suitable program. However, the study did not test for subject interest in Wordstar. Presumably, the greater the subject's interest in a
particular application, the better he or she will perform. An interest variable may also have allowed for better understanding and interpretation of the results surrounding the usage avoidance variable (NON-USAGE).

This study attempts to relate math anxiety with computer anxiety. It is possible that math aptitude would have been a better measure to use. Math GPA, a surrogate measure of math aptitude, was collected during Phase One. This variable was not used in the study because a substantial proportion of the sample did not report it.

The subjects of this study came from a fairly homogeneous group. This fact unfortunately brings the external validity of the entire study into question. However, two factors come to the study's defense. Eirst, this study is experimental research, which is known for its low external validity. Second, all of the personality scales used in the study are widely known and have been used successfully with diverse groups of subjects. This means it may be possible for the scores on these scales obtained in the present study to be extrapolated to the general population.

The present study was originally designed to have a control group. This control group was supposed to allow for the discounting of any effects internal or external to the study. Unfortunately, not enough subjects signed up for the project to obtain a significant control group ($n=16$).

The determination of which subjects were assigned to which group could have been made differently. For this study, the sample was divided at the median of the Phase One score on the Dambrot et al. (1985) scale. The sample could have been divided at the quartiles. In this case, the highly anxious would have been compared to the non-anxious during Phase Two, possibly creating a greater polarization of study results.

Phase Two itself contained several limitations. First, while the number of questions asked was recorded, the type of question asked was not. While no data were collected, it was noticed by the proctor that the questions asked by subjects exposed to the tutorial were more machine-oriented questions than the questions asked by subjects exposed to the lecture/demo. It would have been interesting to obtain definitive data on this because if a question, or question type, can be anticipated, it may be possible to tailor the training program to address it.

The second limitation in Phase Two was in the task itself. As detailed in Appendix C, the task involved transcription of the first part of chapter one of the book Where Eagles Dare by Alistair MacLean. Perhaps the task should have been more class work oriented. This would be the case if the training had taken place in a real organization. This objective could have been met by using subjects who needed to create a project for a class and giving them the
opportunity to learn how to use Wordstar in order to accomplish it.

The third limitation in Phase Two was in the way in which the errors in the task manuscript were counted. While it is true that two independent raters counted the errors for each subject, the method of determining what constituted an error was rather arbitrary. For example, when a cursory examination of the manuscripts determined that there were several spelling errors, it was decided by the raters not to count spelling errors in the manuscript error totals. The only actual errors that were counted were those which were discussed in the task instructions.

A major limitation of this study was brought about by its inability to address the question of which comes first, a poor attitude toward computers or computer anxiety. This question may have been addressed by using a scale such as the Howard (1983) Attitude Toward Microcomputers Instrument. This instrument was designed to measure actual attitudes toward computers as opposed to the computer anxiety construct measured by the Dambrot et al. (1985) and Maurer (1983) scales. The Howard scale was not used in the study in order to keep the test instrument at a reasonable length.

Future Research

One issue this study was not able to address is what type of an anxiety state computer anxiety actually is. Using
the duration and intensity of anxiety as dimensions, four "regions" of state anxiety can be created. These are depicted in Figure 14.

Region 1, Temporary-Normal state anxiety, can be observed in any situation of short duration in which most individuals would be expected to feel anxious. An example of this would be a job interview.

INTENSITY

Normal	Neurotic
Region 1	Region 2
Remporary $\left.\begin{array}{ll}\text { Region 3 } & \text { Region 4 } \\ \hline\end{array}\right]$	

Figure 14. Forms of State Anxiety

Test anxiety is a good example of Region 2, TemporaryNeurotic state anxiety. For many individuals, testing situations are intolerable, even if they are quite familiar and comfortable with the material over which they are to be tested. After the test is over, the individual is no longer anxious.

An example of Region 3, Permanent-Normal state anxiety, would be an avoidance of animals, in which an individual would try to avoid a situation (a confrontation with the
neighbor's dog or cat, for example) if it is reasonably feasible. If it is not feasible, however, the individual will still be able to endure the situation for as long as is necessary.

Phobias fall into Region 4, Permanent-Neurotic state anxiety. The individual will avoid the situation if possible, and if it is not possible, the individual may suffer an adverse reaction. For example, when a person who suffers from claustrophobia finds himself in a small windowless room, he will do almost anything to get out. Serious sufferers may well have such an adverse reaction to the situation that they faint. The term "Permanent" may in fact be a misnomer, as it is possible for sufferers of Region 4 state anxiety to receive treatment. However, for the present study, Permanent is used to convey the idea that this particular form of state anxiety is not a short-term affliction.

Oetting (1983) introduces the idea of concept-specific anxiety. He defines it as "the anxiety associated with a specified, clearly defined, and limited situation" (p. 2). He goes on to say that computer anxiety is a manifestation of this concept-specific anxiety. Within the framework presented in Figure 14, concept-specific anxiety would most likely fall into either Region 1 (Temporary-Normal) or Region 2 (Temporary-Neurotic) state anxiety.

Each of these state anxiety regions, with the possible exception of Region 1 , are likely to have considerable effect on an individual. The possible implications to organizations of computer anxiety as an anxiety state are as follows: If computer anxiety falls into Regions 1 or 3, simple exposure to computers should be sufficient to make the individual a productive force in the organization. If computer anxiety falls into Region 2, a specific training program must be instituted in order to impress upon individuals the fact that computers are really nothing to fear.

If, however, computer anxiety falls into Region 4, Permanent-Neurotic state anxiety, then the only feasible solution to the problem of computer anxiety is an updating of selection and placement methods used by organizations. Personality testing using scales such as those used in this study should be employed in order to direct those individuals who display a tendency toward computer anxiety away from those jobs which require direct use of the computer.

It is quite possible that computer anxiety produces a different anxiety state in different individuals. Also, the prescriptions noted above should by no means be taken as the final word on how to deal with computer anxiety. They should merely be used as a framework for continued computer anxiety research.

Both of the computer anxiety instruments used in this study proved to be highly reliable. The most significant
results were found using the Maurer (1983) Computer Anxiety Index. In addition this instrument was used as a basis for the Dambrot et al. (1985) Computer Attitudes Scale. These two factors lead to the recommendation of the Maurer instrument as the instrument to use in future computer anxiety research. It must be noted that there are several other scales - for example the Raub (1981) scale - which have been successfully used in computer anxiety research. Clearly, there is a need for a definitive computer anxiety measurement instrument.

This study reaffirms past research which suggests computer anxiety is a real phenomenon. Results from past research conflict as to how to deal with computer anxiety. The present study suggests several possible directions for future research. These include the discovery of exactly what type of anxiety state computer anxiety really is, the development of a highly reliable and externally valid battery of tests to identify sufferers of computer anxiety, and the development of appropriate training methods designed to alleviate computer anxiety.

REFERENCES

Agresti, A., \& Agresti, B. F. (1979). Statistical methods for the social sciences. San Francisco: Dellen Publishing.

Ahl, D. H. (1975). Survey of public attitudes towards computers in society. Creative computing, 1(6), 49-51.

The American Heritage Dictionary (2nd college ed.). (1985). Boston: Houghton Mifflin.

Anderson, J. (1983). The heartbreak of cyberphobia. Creative computing, 2(8), 117-118, 125-128.

Bakon, C., Nielsen, A., \& McKenzie, J. (1983). Computer fear. Educational Leadership, $41(1), 27$.

Bloom, A. J. (1985). An anxiety management approach to computerphobia. Training and Development Journal, 39(1), 90-94.

Bralove, M. (1983, March 7). Computer anxiety hits middle management. The Wall Street Journal, p. 22.

Brod, C. (1982). Managing technostress: Optimizing the use of computer technology. Personnel Journal, 61(10), 753-757.

Brod, C. (1984). Technostress: The human cost of the computer revolution. Reading, MA: Addison-Wesley.

Business week. (1982, March 29). How to conquer fear of computers. Business Week, pp. 176-178.

Cambre, M. A. \& Cook, D. L. (1985). Computer anxiety: Definition, measurement, and correlates. Journal of Computing Research, 1(1), 37-54.

Cancro, R., \& Slotnick, D. L. (1970). Computer graphics and resistance to technology. American Journal of Psychotherapy, 24, 461-469.

Capron, H. L., \& Williams, B. K. (1984). Computers and data processing (2nd ed.). Menlo Park, CA: Benjamin/Cummings.

Christiansen, D. (1982). Computer and math anxiety. IEEE Spectrum, 12(11), 23.

Collins, F. (1983). The V-Curve: A road map for avoiding people-problems in systems changes. Journal of Systems Management, 34(2), 31-35.

Cook, J. D., Hepworth, S. J., Wall, T. D., \& Warr, P. B. (1981). The experience of work. New York: Academic press.

Coopersmith, S. (1967). The antecedents of self-esteem. San Francisco: W. H. Freeman \& Co.

Dambrot, F. H., Watkins-Malek, M. A., Silling, S. M., Marshall, R. S., \& Garver, J. A. (1985). Correlates of sex differences in attitudes toward and involvement with computers. Journal of Vocational Behavior, 27, 71-86.

Danziger, J. N. (1985). Social science and the social impacts of computer technology. Social Science Quarterly, 66(1), 3-21.

Davidson, R. S., \& Walley, P. B. (1985). Computer fear and addiction: Analysis, prevention, and possible modification. Journal of Organizational Behavior Management, $6(3 \& 4), 37-51$.

Day, C. R. (1985, January 21). Anxiety 'busters' tackle computers. Industry Week, pp. 65-67.

Faerber, L. G., \& Ratliff, R. L. (1980). People problems behind MIS failures. Einancial Executive, 48(4), 1824.

Fennema, E., \& Sherman, J. A. (1976). Eennema-Sherman mathematics attitudes scale. Washington, D.C.: American Psychological Association.

Fersko-Weiss, H. (1983). Personal computing at the top. Rersonal computing, $7(3), 68-71$.

Gardner, E., Render, B., Ruth, S., \& Ross, J. (1985). Human-oriented implementation cures for 'cyberphobia'. Data Management, 23(11), 29-32, 46.

Gutman, D. (1986, March 1). The big lie of the eighties. Ames (IA) Tribune, p. C9.

Herdman, P. C. (1983). High tech anxiety. Management EOcus, 30(3), 29-31.

Howard, G. S. (1983). Computer anxiety and other determinants of managers' attitudes toward the usefulness of microcomputers in management. Unpublished doctoral dissertation, Kent State University, Kent, Ohio.

Hultgren, W. A. (1984). An introduction to computerized training. Personnel Journal, 63(10), 22-23.

Hussain, D., \& Hussain, K. M. (1985). Information processing systems for management (2nd ed.). Homewood, IL: Irwin.

Johansson, G., \& Aronsson, G. (1984). Stress reactions in computerized administrative work. Journal of Qccupational Behaviour, 5, 159-181.

Jordan, E. W. \& Stroup, D. F. (1982). The behavioral antecedents of computer fear. Journal of Data Education, 22, 7-8.

Koester, R., \& Luthans, F. (1979). The impact of the computer on the choice activity of decision makers: A replication with actual users of computerized MIS. Academy of Management Journal, 22(2), 416-422.

Laws, J. L. (1979). The second X: Sex role and social role. New York: Elsevier North Holland.

Lee, R. S. (1970). Social attitudes and the computer revolution. Public Opinion Ouarterly, 24(3), 53-59.

Lefcourt, H. M. (1981). Research with the lecus of control construct (Vol 1.). New York: Academic Press.

Lefcourt, H. M. (1982). Locus of control: Current trends in theory and research (2nd ed.). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Levitt, E. E. (1967). The osychology of anxiety. Indianapolis: The Bobbs-Merrill Company.

Lichtman, D. (1979, January). Survey of educator's attitudes toward computers. Creative Computing, 5(1), 48-50.

Lucas, H. C., Jr. (1981). Implementation: The key to successful information systems. New York: Columbia University Press.

Maurer, M. M. (1983). Development and validation of a measure of computer anxiety. Unpublished master's thesis, Iowa State University, Ames.

May, R. (1950). The meaning of anxiety: New York: Ronald Press.

Mitchell, F. S. (1983). And now here come the micro systems! Modern Railroads, 38(11), 34-36.

Naisbitt, J. (1984). Megatrends: Ten new directions transforming our lives. New York: Warner Books.

Neal, A. \& Seeman, M. (1964). Organizations and powerlessness: a test of the mediation hypothesis. American Sociological Review, 29, 216-225.

Oetting, E. R. (1983). Manual for Oetting's computer anxiety scale (COMPAS). Fort Collins, CO: Rocky Mountain Behavioral Science Institute.

Office of Finance and Management, Safety and Health Management Division, Industrial Hygiene Team. (1984). Health hazard review of video display terminals (TR-816/revised). Washington D.C.: U.S. Department of Agriculture.

Paul, L. (1982, April 5). Research on cyberphiliacs, cyberphobiacs reveals 30% of workers fear computers. computerworld, 16, p. 14.

Perrow, C. (1983). The organizational context of human factors engineering. Administratiye Science Ouarterly, 28, 521-541.

Prell, E. R. (1984). The analysis of cyberphobia and its relation to personality constructs. Unpublished manuscript, Department of Management, Iowa State University, Ames.

Rafaeli, A. (1986). Employee attitudes toward working with computers. Journal of Occupational Behaviour, 1, 89106.

Raub, A. C. (1981). Correlates of computer anxiety in college students. Unpublished doctoral dissertation, University of Pennsylvania, Philadelphia.

Raub, A. C. (1983). Conquering computer fear. Management World, $12(10)$ 16-17.

Rehfisch, J. (1958). Some scale and test correlates of a personality rigidity scale. Journal of consulting Rsychology, 22, 372-374.

Riaz Khan, M., \& Schapira, P. A. (1983). The effects of office automation on management. Industrial Management, 25(2), 15-19.

Robinson, J. P., \& Shaver, P. R. (1973). Measures of social psychological attitudes. Ann Arbor, Michigan: Publications Division, Institute of Social Research.

Rohner, D. J. (1981). Development and validation of an index of computer anxiety among prospective teachers. Unpublished master's thesis, Iowa State University, Ames.

Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs, 80, 1-28.

Rubin, C. (1983). Some people should be afraid of computers. Rersonal computing, $I(8), 55-57,163$.

Schwed, M. (1985, December 4). Technophobia: Fearing the future. Ames(IA) Tribune, p. A7.

Seaward, M. R. (1983). Awakening to office automation. Management World, 12(5), 27-29.

Selden, P. H., \& Schultz, N. L. (1982). What the research says about CAI's potential. Training, 12(11), 61-64.

Small Business Report. (1984). Computerphobia: Causes and cures. Small Business Report, 2(2), 72.

Spielberger, C. D., (Ed.). (1966). Anxiety and behavior. New York: Academic Press.

Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R., \& Jacobs, G. A. (1983). Manual for the statetrait anxiety inventory. Palo Alto, CA: Consulting Psychologist Press.

Steers, R. M., \& Porter, L. W. (1983). Motivation \& work behavior. New York: McGraw-Hill.

Taylor, A. L., III. (1982, July 19). Dealing with terminal phobia. Time, p. 82.

Tobias, S. (1978). Overcoming_math anxiety. New York: W.W. Norton.

Toffler, A. (1980). The third wave. New York: William Morrow.

Training. (1985). Trends in CBT. Training, 22(2), 95.
Turner, S. M. (Ed.). (1984). Behavioral theories and treatment of anxiety. New York: Plenum Press.

Vroom, V. (1964). Work_and motivation. New York: Wiley.
The Wall Street Journal. (1983, March 22). Fear of trying. The Wall Street Journal, p. 1.

Walton, R. E. (1985). Social choice in the development of advanced information technology. In M. Beer \& B. Spector (Eds.), Readings in human resource management (pp. 557-567). New York: The Free Press.

Webster's new collegiate dictionary. (1979). (rev. ed.). Springfield, MA: G. \& C. Merriam Company.

Widmer, C., \& Parker, J. (1983). Micro-anxiety - How to beat it before you get it. Electronic Education, 3(3), 23-24.

Wrege, R. (1982). High (tech) anxiety. Popular Computing, 1(3), 46-52.

Zemke, R. (1984). The slippery menace of . . . computerphobia. Training, 21(6), 34-35, 39, 42.

ACKNOWLEDGMENTS

My gratitude goes out to Lynn Luzzi of the Iowa State University Computation Center for her cooperation in reserving the microcomputer labs used during Phase Two of this study. Also, I appreciate the help of Dr. Fred Borgen of the Iowa State University Department of Psychology in obtaining information on anxiety measures. For her invaluable help and support during this study, I am deeply indebted to Katherine Nokes Ferguson. I couldn't have done it without you, Katie.

Thanks also to my committee members, Dr. Paula Morrow, Dr. Mike Crum, and Dr. Roy Teas, for their guidance and encouragement throughout this project. One hears many horror stories of graduate students working with uncooperative committees. However, in my case, I could not have had a more cooperative and helpful committee. Their doors were always open to me whenever I had a question or needed a pep talk. Special thanks go out to my major professor, Dr. James C. McElroy, for giving me the original idea for this project, for having the patience to read and critique my numerous drafts and answer all of my questions, for making it an enjoyable learning experience, and for being there to make sure that I did it right.

And finally, to my parents, Rube and Lonia. Words cannot properly express all that I owe them for their love and support, both in this project and in all of the other ones I have undertaken in my life. So all that I can say to them is, many thanks.

APPENDIX A.

SUMMARY OF SCALES
USED IN INSTRUMENT BATTERIES

Summary of Instruments Used in Test Batteries

QUESTIONNAIRE	$\begin{aligned} & \text { DESIGNED } \\ & \text { TO MEASURE } \end{aligned}$	$\begin{gathered} \text { \# OF } \\ \text { ITEMS } \end{gathered}$	RELIABILITY	VALIDITY	TYPE
(CATT) Dambrot (1985)	Attitudes toward computers	20	. 79	***	5-point Likert
Rigidity Scale Rehfisch (1958)	Personality rigidity	$\begin{gathered} 27 \\ (39)^{2} \end{gathered}$. 72	***	True/ False
```Self-Esteem Inventory Coopersmith (1967)```	Attitudes toward the self	25	. 90	. 60	True/ False
Powerlessness Neal \& Seeman (1964)	Expectancies for control of events	7	.70	***	True/   Ealse
Computer Knowledge Howard (1983)	Knowledge of computers	10	***	_2	MultiChoice
(CAIN)   Maurer (1983)	Computer anxiety	26	.94/.90 ${ }^{3}$	***	6-point Likert
Math Anxiety   Index      Sherman (1976)	Math anxiety	12	. 92	***	5-point   Likert
Computer Experience Raub (1981)	Computer experience	1	***	***	MultiChoice
Scale to   Measure   Internal vs   External   Control   Rotter (1966)	Perceived Internal vs External Control of Reinforcement	29	$\begin{gathered} .55 \\ \text { to } \\ .72 \end{gathered}$	$\begin{gathered} -.07 \\ t o \\ -.35 \end{gathered}$	2-Item Forced Choice
Spielberger, et al. StateTrait Anxiety Inventory (1983)	Levels of State and Trait Anxiety	40	. 90	$\begin{aligned} & .52 \\ & t o \\ & .80 \end{aligned}$	4-Point Likert

${ }^{1}$ Original scale consisted of 39 items divided into 8 subscales. This study uses four of the subscales, consisting of 24 items.
${ }^{2}$ Construct validity determined appropriate by Howard (1983).
3.94 internal consistency reliability, . 90 test/retest reliability.

## APPENDIX B.

INDIVIDUAI INSTRUMENTS USED IN PHASE ONE
SECTION ONE (90 ITEMS)
PART A. Rersonal Demographics (3)
PART B. Self-Esteem Inventory (27) (Coopersmith, 1967.
(*) indicates high self-esteem)
PART C. Powerlessness (7) (Neal and Seeman, 1964. Answers of "True" indicates powerlessness)

PART D. Internal-External Control (29) (Rotter, 1966. Underlined answer indicates External Control others are "fillers")

PART E. Rigidity (24) (Rehfisch, 1958. True/False (*) indicates rigid response)

SECTION THO (91 ITEMS)
PART F. Computer Experience (1) (Raub, 1981. Multichoice)

PART G Word Processing_Knowledge (2) (Multi choice)
PART H. Computer Attitudes (20) (Dambrot et al., 1985. Five-point Likert-type scale)

PART I. Computer Anxiety (26) (Maurer, 1983. Five-point Likert-type scale)

PART J. Computer Knowledge (10) (Howard, 1983. Multichoice)

PART K. Math Anxiety (12) (Fennema and Sherman, 1976. Five point Likert-type scale)

PART L. Trait Anxiety (20) (Spielberger et al., 1983 Four point Likert-type scale.)

## INDIVIDUAI INSTRUMENTS USED IN PHASE TWO

(67 ITEMS)
PART A. State Anxiety (20) (Spielberger et al., 1983 Four point Likert-type scale.)

PART B. Computer Attitudes (20) (Dambrot et al., 1985. Five-point Likert-type scale)

PART C. Computer Anxiety (26) (Maurer, 1983. Six-point Likert-type scale)

PART D. Continued Wordstar Usage (1) (Multi-Choice)

## Rre-test Phase Instrument Battery

## SECTION ONE

PART A. (VARIABLE NAME: DEM)
In this section, we are asking for some information about you. These questions are background information; they will not be used to identify anyone. They are included to help us determine what effect your experiences may have on your answers to other items in this questionnaire.

1. Approximately what is your overall GPA?
(VARIABLE NAME: DEM1)
A. 0.0-1.5
D. 2.6-3.0
B. 1.6-2.0
E. 3.1-3.5
C. 2.1-2.5
F. 3.6-4.0
2. Approximately what is your GPA in the math courses you have taken? (VARIABLE NAME: DEM2)
A. 0.0-1.5
D. 2.6-3.0
B. 1.6-2.0
E. 3.1-3.5
C. 2.1-2.5
F. 3.6-4.0
3. If given a choice, in which of the following ways would you rather learn new material? (VARIABLE NAME: DEM3)
A. In a traditional classroom setting
B. On my own using a self-paced tutorial

PART B. (VARIABLE NAME: EST)
For the following 27 questions, please fill in circle $A$ if the statement is true in your case, or circle $B$ if the statement is false in your case.
(B) 4. I often wish $I$ were someone else.
(B) 5. I find it very hard to talk in front of a group.
(B) 6. There are lots of things about myself I'd like to change if I could.
(A) 7. I can make up my mind without too much trouble.
(A) 8. I'm a lot of fun to be with.
(B) 9. I get upset easily at home.
(B) 10. It takes me a long time to get used to anything new.
(A) 11. I'm popular with people my own age.
(B) 12. My family expects too much of me.
(A) 13. My family usually considers my feelings.
(B) 14. I give in very easily.
(B) 15. It's pretty tough to be me.
(B) 16. Things are all mixed up in my life.
(A) 17. Other people usually follow my ideas.
(B) 18. I have a low opinion of myself.
(B) 19. There are many times when I'd like to leave home.
(B) 20. I often feel upset about the work that I do.
(B) 21. I'm not as nice looking as most people.
(A) 22. If I have something to say, I usually say it.
(A) 23. My family understands me.
(B) 24. Most people are better liked than I am.
(B) 25. I usually feel as if my family is pushing me.
(B) 26. I often get discouraged at what I am doing.
(A) 27. Things usually don't bother me.
(A) 28. I'm proud of my school work.
(A) 29. I'm pretty happy.
(B) 30 . No one pays much attention to me at home.

PART C. (VARIABLE NAME: POW)
For the following 7 questions, please fill in circle A if you feel the statement is true, or circle B if you feel the statement is false.
31. Those running our government must hush up many things that go on behind the scenes, if they wish to stay in office.
32. Having "pull" is more important than ability in getting a government job.
33. In order to get elected to public office, a candidate must make promises he does not intend to keep.
34. Those elected to public office have to serve special interests (e.g., big business or labor) as well as the public's interest.
35. In getting a job promotion, some degree of "apple polishing" is required.
36. In getting a good paying job, it is necessary to exaggerate one's abilities (or personal merits).
37. In order to have a good income, a salesperson must use "high pressure salesmanship."

PART D. (VARIABLE NAME: LOC)
For the following 29 questions, please fill in the letter of the statement which most closely corresponds to your feelings on the subject discussed.
38. A. Children get into trouble because their parents punish them too much.
B. The trouble with most children nowadays is that their parents are too easy with them.
39. A. Many of the unhappy things in people's lives are partly due to bad luck.
B. People's misfortunes result from the mistakes they make.
40. A. One of the major reasons why we have wars is because people don't take enough interest in politics.
B. There will always be wars, no matter how hard people try to prevent them.
41. A. In the long run people get the respect they deserve in this world.
B. Unfortunately, an individual's worth often passes unrecognized no matter how hard he tries.
42. A. The idea that teachers are unfair to students is nonsense.
B. Most students don't realize the extent to which their grades are influenced by accidental happenings.
43. A. Without the right breaks one cannot be an effective leader.
B. Capable people who fail to become leaders have not taken advantage of their opportunities.
44. A. No matter how hard you try some people just don't like you.
B. People who can't get others to like them don't understand how to get along with others.
45. A. Heredity plays the major role in determining one's personality.
B. It is one's experiences in life which determine what they're like.
46. A. I have often found that what is going to happen will happen.
B. Trusting to fate has never turned out as well for me as making a decision to take a definite course of action.
47. A In the case of the well prepared student there is rarely if ever such a thing as an unfair test.
B. Many times exam questions tend to be so unrelated to course work that studying is really useless.
48. A. Becoming a success is a matter of hard work, luck has little or nothing to do with it.
B. Getting a good job depends mainly on being in the right place at the right time.
49. A. The average citizen can have an influence in government decisions.
B. This world is run by the few people in power, and there is not much the little guy can do about it.
50. A. When $I$ make plans, $I$ am almost certain that $I$ can make them work.
B. It is not always wise to plan too far ahead because many things turn out to be a matter of good or bad fortune anyhow.
51. A. There are certain people who are just no good.
B. There is some good in everybody.
52. A. In my case getting what $I$ want has little or nothing to do with luck.
B. Many times we might just as well decide what to do by by flipping a coin.
53. A. Who gets to be the boss often depends on who was lucky enough to be in the right place first.
B. Getting people to do the right thing depends upon ability, luck has little or nothing to do with it.
54. A. As far as world affairs are concerned, most of us are the victims of forces we can neither understand, nor control.
B. By taking an active part in political and social affairs the people can control world events.
55. A. Most people don't realize the extent to which their lives are controlled by accidental happenings.
B. There really is no such thing as "luck."
56. A. One should always be willing to admit mistakes.
B. It is usually best to cover up one's mistakes.
57. A. It is hard to know whether or not a person really likes you.
B. How many friends you have depends on how nice a person you are.
58. A. In the long run, the bad things that happen to us are balanced by the good ones.
B. Most misfortunes are the result of lack of ability, ignorance, laziness, or all three.
59. A. With enough effort we can wipe out political corruption.
B. It it is difficult for people to have much control over the things politicians do in office.
60. A. Sometimes I can't understand how teachers arrive at the grades they give.
$B$. There is a direct connection between how hard I study and the grades I get.
61. A. A good leader expects people to decide for themselves what they should do.
B. A good leader makes it clear to everybody what their jobs are.
62. A. Many times I feel that I have little influence over the things that happen to me.
B. It is impossible for me to believe that chance or luck plays an important role in my life.
63. A. People are lonely because they don't try to be friendly.
B. There's not much use in trying too hard to please people, if they like you, they like you.
64. A. There is too much emphasis on athletics in high school.
B. Team sports are an excellent way to build character.
65. A. What happens to me is my own doing.
B. Sometimes I feel that I don't have enough control over the direction my life is taking.
66. A. Most of the time I can't understand why politicians behave the way they do.
B. In the long run the people are responsible for bad government on a national as well as on al local level.

PART E. (VARIABLE NAME: RIG)
For the following 24 questions, please fill in circle A if the statement is true in your case, or circle B if the statement is false in your case.
(A) 67. I usually don't like to talk much unless $I$ am with people I know very well.
(B) 68. I like to talk before groups of people.
(A) 69. It is hard for me to start a conversation with strangers.
(B) 70. I would like to be an actor on the stage or in the movies.
(A) 71. It is hard for me to act natural when I am with new people.
(A) 72. I feel nervous if I have to meet a lot of people.
(A) 73. I usually feel nervous and ill at ease at a formal dance or party.
(B) 74. When I work on a committee I like to take charge of things.
(B) 75. I usually take an active part in the entertainment at parties.
(B) 76. I am a better talker than listener.
(B) 77. I try to remember good stories to pass them on to other people.
(A) 78. I am embarrassed with people I do not know well.
(A) 79. A strong person doesn't show their emotions and feelings.
(A) 80. I must admit that it makes me angry when other people interfere with my daily activity.
(A) 81. I find that a well-ordered mode of life with regular hours is congenial to my temperment.
(A) 82. It bothers me when something unexpected interrupts my daily routine.
(A) 83. I don't like to undertake any project unless I have a pretty good idea as to how it will turn out.
(A) 84. I find it hard to set aside a task that I have undertaken, even for a short time.
(A) 85. I don't like things to be uncertain and unpredictable.
(A) 86. I am very slow in making up my mind.
(B) 87. At times I feel that I can make up my mind with unusually great ideas.
(A) 88. I get very tense and anxious when I think other people are disapproving of me.
(A) 89. I am certainly lacking in self-confidence.
(A) 90. Criticism or scolding makes me very uncomfortable.

## SECTION THO

In this section, we wish to find out some information from you relating to computers.

PART F. (VARIABLE NAME: EXP)
91. Which one of the following statements most closely applies to you?
A. I have no experience using a computer.
B. I have used a computer printout produced by someone else.
C. I have personally worked with a computer (played computer games, input information for processing, etc.)
D. I have personally written a computer program.
E. I am proficient in one or more computer languages.
F. I earn (or supplement) my living with my knowledge of computer software or hardware.

PART G. (VARIABLE NAME: KNOW)
92. Which of the following statements would best describe your familiarity with word processing on a computer?
A. I have never used a computer for word processing.
B. I have used a word processor before, but do not have a working knowledge of one.
C. I have used one or more word processors and am comfortable with them.
D. I am conversant with one or more word processing programs.
E. I use a word processor for most of my typing needs.
93. Which of the following statements would best describe your familiarity with the word processing program Wordstar?
A. I have never used Wordstar.
B. I have used Wordstar but do not have a working knowledge of it.
C. I have used Wordstar and have some idea of how it works.
D. I use Wordstar occasionally and am quite familiar with it.
E. I currently use Wordstar for most of my typing needs.

PART H. (VARIABLE NAME: DAMBA)
For the following 20 statements, please use the following scale to express your feelings toward the topic discussed:

A	B	C	D	E
Strongly   Agree	Agree	Undecided	Disagree	Strongly
Disagree				

(+) 94. I think computers are fascinating.
(+) 95. If I used a computer, I could save time and work.
(-) 96. I feel very negative about computers in general.
(-) 97. Only computer specialists can use computers.
$(-)$ 98. Computers control too much of our world today
(-) 99. Computers are having a bad effect on my work and my life.
$(+)$ 100. A computer could make learning more fun for me.
$(-)$ 101. Computers intimidate and threaten me.
(-) 102. Even though computers are valuable and necessary, I still have a fear of them.
$(-)$ 103. All computer people talk in a strange and technical language.
(+) 104. Given a little time and training anybody could learn to use computers.
(-) 105. Government regulations should be established to control computers.
(-) 106. Computers make mistakes.
(+) 107. Using a computer could be enjoyable.
(t) 108. I look forward to computers taking over certain routine tasks of my home and job.
(+) 109. If I had the money I'd buy a home computer.
(+) 110. I would rather have a computer present my instruction than a teacher.
(-) 111. Computers are so complicated I would rather do my work manually.
$(-)$ 112. Computers are being forced on us; we are having our decision process replaced by them, making us lose control of our lives.
(+) 113. Computers are superior to humans in processing information.

PART I. (VARIABLE NAME: MAUA)
For the following 26 statements, please use the following scale to express your feelings toward the topic discussed:

A	B	C	D	E	F
Strongly   Agree	Agree	Mildly	Mildly		
Agree	Disagree	Disagree	Strongly		
Disagree					

(+) 114. Having a computer available to me would improve my productivity.
(+) 115. If I had to use a computer for some reason, it would probably save me some time and work.
(+) 116. If I had to use a computer, I would get a better picture of the facts and figures.
(+) 117. Having a computer available to me would improve my general satisfaction.
(-) 118. Having to use a computer would make my life less enjoyable.
$(+)$ 119. Having a computer available to me could make things easier for me.
(-) 120. I feel very negative about computers in general.
$(+)$ 121. Having a computer available to me could make things more fun for me.
$(-)$ 122. If I had a computer at my disposal, I would try to get rid of it.
(+) 123. I look forward to a time when computer are more widely used.
$(-)$ 124. I doubt if $I$ would ever use computers very much.
$(-)$ 125. I avoid using computers whenever I can.
(+) 126. I enjoy using computers.
(-) 127. I feel that there are too many computers around now.
(+) 128. Computers are probably going to be an important part of my life.
(+) 129. A computer could make learning fun.
(+) 130. If I were to use a computer, I could get a lot of satisfaction from it.
(-) 131. If I had to use a computer, it would probably be more trouble than it was worth.
(-) 132. I am usually uncomfortable when I have to use computers.
(-) 133. I sometimes get nervous just thinking about computers.
(-) 134. I will probably never learn to use a computer.
(-) 135. Computers are too complicated to be of much use to me.
(-) 136. If I had to use a computer all the time, I would probably be very unhappy.
(-) 137. I sometimes feel intimidated when $I$ have to use a computer.
(-) 138. I sometimes feel that computers are smarter than I am.
(+) 139. I can think of many ways that I could use a computer.

PART J. (VARIABLE NAME: HOW)
For the following 10 questions, please fill in the circle corresponding to the correct answer. If you are unsure of the answer to the question, please fill in circle $D$ for "Don't know."
140. CPU stands for
A. Computer Processor Understanding.
B. Computer Processing Unit.
C. Central Processing Unit.
D. Don't know.
141. Information is actually internally stored and manipulated by a computer in $\qquad$ form.
A. decimal
B. character
C. binary
D. Don't know.
142. Early computers used what type of processing?
A. Batch
B. Interactive
C. Virtual
D. Don't know.
143. An example of computer software is a
A. computer printer.
B. computer program.
C. computer operator.
D. Don't know.
144. Translation of high level languages into machine language is done by a(an)
A. compiler
B. assembler
C. encoder
D. Don't know.
145. Which of the following is not a programming language?
A. DIFT
B. $A D A$
C. LISP
D. Don't know.
146. Which of these is not a programming language?
A. COBOL
B. SIMPLEX
C. FORTRAN
D. Don't know.
147. Which of the following is considered a secondary storage device?
A. Core memory
B. Punched cards
E. Disk
D. Don't know.
148. A computer architecture that permits the real memory to act as if it is larger than it really is is called
A. phantom memory.
B. virtual memory.
C. variable memory.
D. Don't know.
149. A concept that revolutionized the practice of computer programming is
A. Optimal-Path Programming.
B. Structured Programming.
C. User-Centered Programming.
D. Don't know.

PART K. (VARIABLE NAME: MATH)
For the following 12 statements, please use the following scale to express your feelings:

A	B	C	D	E
Strongly   Agree	Agree	Undecided	Disagree	Strongly   Disagree

(+) 150. Math doesn't scare me at all.
(+) 151. It wouldn't bother me at all to take more math courses.
(+) 152. I haven't usually worried about being able to solve math problems.
(+) 153. I almost never have gotten shook up during a math test.
$(+)$ 154. I usually have been at ease during math tests.
$(+)$ 155. I usually have been at ease in math classes.
(-) 156. Mathematics usually makes me feel uncomfortable and nervous.
(-) 157. Mathematics makes me feel uncomfortable, restless, irritable, and impatient.
(-) 158. I get a sinking feeling when $I$ think of trying hard math problems.
(-) 159. My mind goes blank and $I$ am unable to think clearly when working mathematics.
(-) 160 . A math test would scare me.
(-) 161. Mathematics makes me feel uneasy and confused.

PART I. (VARIABLE NAME: TRAIT)
A number of statements which people have used to describe themselves are given below. Read each statement and then use the following scale to indicate how you generally feel:

```
A B C D
Almost
 Never
Sometimes
Often
```


## Almost

``` Always
(+) 162. I feel pleasant.
(-) 163. I feel nervous and restless.
(+) 164. I feel satisfied with myself.
(-) 165. I wish I could be as happy as others seem to be.
(-) 166. I feel like a failure.
(+) 167. I feel rested.
(+) 168. I am "calm, cool and collected."
(-) 169. I feel that difficulties are piling up so that I cannot overcome them.
(-) 170. I worry too much over something that doesn't really matter.
(+) 171. I am happy.
(-) 172. I have disturbing thoughts.
(-) 173. I lack self-confidence.
(+) 174. I feel secure.
(+) 175. I make decisions easily.
\((-)\) 176. I feel inadequate.
(+) 177. I am content.
\((-)\) 178. Some unimportant thought runs through my mind and bothers me.
(-) 179. I take disappointments so keenly that I can't put them out of my mind.
(+) 180. I am a steady person.
\((-)\) 181. I get in a state of tension or turmoil as \(I\) think over my recent concerns and interests.
```

[^2]PART A. (VARIABLE NAME: STATE)
A number of statements which people have used to describe themselves are given below. Read each statement and then use the following scale to indicate how you feel RIGHT NOW, AT THIS MOMENT:
$\begin{array}{lll}\text { A } & \text { B } & \text { C }\end{array}$
Almost Never

Sometimes
Often

Almost
Always
(+) 1. I feel calm.
(+) 2. I feel secure.
(-) 3. I am tense.
(-) 4. I feel strained.
(+) 5. I feel at ease.
(-) 6. I feel upset.
(-) 7. I am presently worrying over possible misfortunes.
(+) 8. I feel satisfied.
(-) 9. I feel frightened.
(+) 10. I feel comfortable.
(+) 11. I feel self-confident.
(-) 12. I feel nervous.
(-) 13. I am jittery.
(-) 14. I feel indecisive.
(+) 15. I am relaxed.
(+) 16. I feel content.
(-) 17. I am worried.
(-) 18. I feel confused.
(t) 19. I feel steady.
(+) 20. I feel pleasant.

Reproduced by special permission of the Publisher, Consulting Psychologists press, Inc., Palo Alto, CA 94306, from State Trait Anxiety Inventory by Charles Spielberger and Associates 1978. Further reproduction is prohibited without the publishers consent.

PART B. (VARIABLE NAME: DAMBB)
For the following 20 statements, please use the following scale to express your feelings toward the topic discussed:

A	B	C	D	E
Strongly   Agree	Agree	Undecided	Disagree	Strongly   Disagree

(+) 21. I think computers are fascinating.
(+) 22. If I used a computer, I could save time and work.
(-) 23. I feel very negative about computers in general.
$(-) 24$. Only computer specialists can use computers.
$(-)$ 25. Computers control too much of our world today
(-) 26. Computers are having a bad effect on my work and my life.
(+) 27. A computer could make learning more fun for me.
(-) 28. Computers intimidate and threaten me.
(-) 29. Even though computers are valuable and necessary, I still have a fear of them.
(-) 30. All computer people talk in a strange and technical language.
(+) 31. Given a little time and training anybody could learn to use computers.
(-) 32. Government regulations should be established to control computers.
(-) 33. Computers make mistakes.
(+) 34. Using a computer could be enjoyable.
(+) 35. I look forward to computers taking over certain routine tasks of my home and job.
(+) 36. If I had the money I'd buy a home computer.
(+) 37. I would rather have a computer present my instruction than a teacher.
(-) 38. Computers are so complicated I would rather do my work manually.
(-) 39. Computers are being forced on us; we are having our decision process replaced by them, making us lose control of our lives.
(+) 40. Computers are superior to humans in processing information.

PART C. (VARIABLE NAME: MAUB)
For the following 26 statements, please use the following scale to express your feelings toward the topic discussed:

A	B	C	D	E	F
Strongly   Agree	Agree	Mildly	Mildly		Agree

(+) 41. Having a computer available to me would improve my productivity.
(+) 42. If I had to use a computer for some reason, it would probably save me some time and work.
(+) 43. If I had to use a computer, I would get a better picture of the facts and figures.
(+) 44. Having a computer available to me would improve my general satisfaction.
(-) 45. Having to use a computer would make my life less enjoyable.
(+) 46. Having a computer available to me could make things easier for me.
(-) 47. I feel very negative about computers in general.
(+) 48. Having a computer available to me could make things more fun for me.
(-) 49. If I had a computer at my disposal, I would try to get rid of it.
(+) 50. I look forward to a time when computer are more widely used.
(-) 51. I doubt if I would ever use computers very much.
(-) 52. I avoid using computers whenever I can.
(+) 53. I enjoy using computers.
$(-) 54$. I feel that there are too many computers around now.
(+) 55. Computers are probably going to be an important part of my life.
(+) 56 A computer could make learning fun.
(+) 57. If I were to use a computer, I could get a lot of satisfaction from it.
(-) 58. If I had to use a computer, it would probably be more trouble than it was worth.
(-) 59. I am usually uncomfortable when I have to use computers.
(-) 60. I sometimes get nervous just thinking about computers.
(-) 61. I will probably never learn to use a computer.
$(-) 62$. Computers are too complicated to be of much use to me.
(-) 63. If I had to use a computer all the time, I would probably be very unhappy.
(-) 64. I sometimes feel intimidated when $I$ have to use a computer.
(-) 65. I sometimes feel that computers are smarter than I am.
(+) 66. I can think of many ways that I could use a computer.

PART D. (VARIABLE NAME: NON-USAGE)
67. Which of the following statements would most closely describe the possibility that you will use the word processing software you have learned about?
A. I am planning to use it in the future.
B. I will use it if an opportunity to do so came up.
C. I have no plans to ever use the software again.
D. I will definitely never use it again.

## APPENDIX C.

## ASSIGNED TASK AND INSTRUCTIONS

Now that you have participated in a training session and have learned the basics of Wordstar, we would like to take this opportunity to evaluate your skill at using this software. This task we are asking you to do could take you anywhere from 30 minutes to 2 hours.

You are not asked to provide your name, so your identity will remain anonymous. However, please fill in the blank marked ID NUMBER above. Use the last four digits of your social security number as your I.D. number. This information will allow us to distinguish your answers from those of the other participants in this study. We will also use this information in order to match your responses in this phase with Phase Two of this study on effectiveness of computer training methods. This information will not be used for any other purpose. Your complete anonymity is guaranteed. Your participation in this study is completely voluntary. If for any reason you do not wish to continue, simply return this packet to the monitor.

If you have any questions or concerns regarding this study, please feel free to contact me:

Kerm Harrington
323 Carver Hall
294-9401
Thank you for your time and help.

In this packet, you will find 65 lines of text for you to enter into a Wordstar document. You are free to name this document anything you like. Please note that the numbers in parentheses, for example, (01), are not to be entered into the document. They are shown here for reference only. Please enter this text exactly as it is displayed, noting that paragraphs are to begin at lines (01), (19), (35), (43), (45), (46), and (63). There are three things for you to note. First, do not be concerned if the margins in your version of the document do not exactly correspond to the margins shown here. This is to be expected. Second, make certain that your version of the document is right justified. Third, double space the entire document.

After you are done entering in this document, go to the printer and get a hard copy print-out of it. Then, return to your computer and make the changes in your version of the document as described below.

## I. Spelling and Grammar

The author of this piece is British, and as such, there are several references to British words, places, and things. The first set of changes for you to make in your document involves Americanizing this piece.

Changes:
A - In line (01), change the spelling of "clangour" to "clangor".
B - In line (13), change the word "Lancaster" to "B-17".
C - In line (19), change the words "Wing Commander" to "Lieutenant Colonel".
D - In line (21), change the words "Whitstable Bay" to "Cape Cod".
E - Throughout the entire piece, change the word "Siberian" to "Alaskan".

## II. Paragraph format

Changes:
A - For the paragraph beginning at line (01), change the left margin to 15 and the right margin to 55.
B - Single space the paragraph beginning at line (19).
C - Turn off the right justification on the paragraphs beginning at lines (35), (43), and (63).
D - Center the text on line (40).
E - Force a page break between lines (47) and (48).
$F$ - Remove the page numbers from the entire document.

After you have made these changes, save the document, go to the printer and obtain a hard copy of this version. When you have finished, please turn in both print-outs and this packet to the monitor. Once again, thank you for your time and help. It is greatly appreciated.
(01) The vibrating clangour from the four great piston (02) engines set teeth on edge and made an intolerable assault
(03) on cringing eardrums. The decibel-level, Smith
(04) calculated, must have been about that found in a boiler
(05) factory, and one, moreover, that was working on overtime
(06) rates, while the shaking cold in that cramped,
(07) instrument-crowded flight deck was positively Siberian.
(08) On balance, he reflected, he would have gone for the
(09) Siberian boiler factory any time because, whatever its
(10) drawbacks, it wasn't liable to fall out of the sky or
(11) crash into a mountainside which, in his present
(12) circumstances, seemed a likely enough, if not imminent,
(13) contingency for all that the pilot of their Lancaster
(14) bomber appeared to care to the contrary. Smith looked
(15) away from the darkly opaque world beyond the windscreens
(16) where the wipers fought a useless battle with the driving
(17) snow and looked again at the man in the left-hand
(18) captain's seat.
(19) Wing Commander Cecil Carpenter was as completely at
(20) home in his environment as the most contented oyster in
(21) his shell in Whitstable Bay. Any comparison with a
(22) Siberian boiler factory he would have regarded as the
(23) ravings of an unhinged mind. Quite clearly, he found the
(24) shuddering vibrations as soothing as the ministrations of
(25) the gentlest of masseurs, the roar of the engines
(26) positively soporific and the ambient temperature just
(27) right for a man of his leisured literary tastes. Before
(28) him, at a comfortable reading distance, a book rested on
(29) a hinged contraption which he had swung out from the
(30) cabin's side. From what little Smith could occasionally
(31) see of the lurid cover, depicting a bloodstained knife
(32) plunged into the back of a girl who didn't seem to have (33) any clothes on, the wing commander held the more serious (34) contemporary novelist in a fine contempt. He turned a (35) page.
(36) "Magnificent," he said admiringly. He puffed deeply on (37) an ancient briar that smelt like a fumigating plant. "By
(38) heavens, this feller can write. Banned, of course,
(39) young Tremayne" - this to the fresh-faced youngster in
(40) the co-pilot's seat - "so I can't let you have it until
(41) you grow up." He broke off, fanned the smoke-laden air
(42) to improve the visibility, and peered accusingly at his
(43) co-pilot.
(44) "Flying Officer Tremayne, you have that look of pained
(45) apprehension on your face again."
(46) "Yes sir. That's to say, no, sir."
(47) "Part of the malaise of our time," Carpenter said
(48) sorrowfully. "The young lack so many things, like
(49) appreciation of a fine pipe tobacco or faith in their (50) commanding officers." He sighed heavily, carefully (51) marked the place in his book, folded the rest away and (52) straightened in his seat. "You'd think a man would be (53) entitled to some piece and quiet on his own flight deck." (54) He slid open his side screen. An icy gust of snow-laden (55) wind blew into the flight deck, carrying with it the
(56) suddenly deepened roar from the engines. Carpenter
(57) grimaced and thrust his head outside, shielding his eyes
(58) with a gauntleted right hand. Five seconds later he
(59) shook his head dispiritedly, screwed his eyes shut as he
(60) winced in what appeared to be considerable pain, withdrew
(61) his head, closed the screen, brushed the snow away from
(62) his flaming red hair and magnificent handlebar moustache,
(63) and twisted round to look at Smith.
(64) "It is no small thing, Major, to be lost in a blizzard
(65) in the night skies over war-torn Europe."

Note: The text reproduced here comes from the book:

MacLean, Alistar. (1967). Where eagles dare. New York: Doubleday

## APPENDIX D.

MODIFIED WORDSTAR TUTORIAL

HELLO AND WELCOME TO WORDSTAR!!!!!!
If you've gotten this far, you've obviously figured out how to open a document file. Now let's begin this tutorial by talking about cursor control. The cursor is the flashing underline which you now see to the far left of the word "HELLO".

At the top of the screen you will find the main menu; on the left side of this menu is a selection of cursor control commands. The caret $(\wedge)$ in front of the letters indicates that you should press the CTRL key like a shift key as you press the letter. You will find the CTRL key on the lower left hand side of the keyboard. Look for it now and try using ${ }^{\wedge} \mathrm{X}$ to move the cursor until you can see the next paragraph.

There are also commands for scrolling; that means to move the "window" that you're looking at the text through up and down. Try pressing ${ }^{\wedge}$ C right now.

Congratulations! You've figured out how to read the rest of this tutorial! Hopefully you have jumped down in the text by one screen. If you press ^R, you'll jump back upward one screen. Try pressing $\wedge^{\wedge} R$, then press ${ }^{\wedge} C$ to get back here. From here on, use the cursor controls to read more of this document.

The cursor can be moved in the document using keys laid out in the famous "Star diamond" (called that because Wordstar, CalcStar, and all the other Micropro software uses it):
Word left ${ }^{\wedge} A$
^A moves the cursor to the beginning of the word to the left of the cursor; $\wedge F$ moves the cursor to the beginning of the word to the right of the cursor. Try using the diamond keys to move the cursor now.

Above the numeric keypad to the right of the typewriter keys are four arrow keys; they can also be used to move the cursor a character or line at a time. The advantage of the CTRL keys is that you don't have to move one hand off the keyboard. If you press SHIFT while using the arrow keys, you'll jump further than one character or line:

$$
\begin{aligned}
& \text { SHIFT <- -- jump to beginning of line } \\
& \text { SHIFT -> -- jump to end of line } \\
& \text { SHIFT UP -- jump to top of screen } \\
& \text { SHIFT DOWN -- jump to bottom of screen }
\end{aligned}
$$

Hmm. . .what's this dotted line across the screen? The dotted line indicates where Wordstar will break for a new page when it prints. If you don't like having the paragraph broken up like that (or if it's in the middle of a table) you can add extra carriage returns before the page break to shove the paragraph into the next page or type ".PA" at the beginning of a line to force a page break anywhere. The ".PA" is what is
known as a "Dot Command" in Wordstar. We will talk more about Dot Commands later.

## ENTERING TEXT

When we first enter the editing mode with Wordstar it is in INSERT MODE. That means that any text typed in will be inserted wherever the cursor is, and any text after that will be pushed out of the way and not overwritten.

If this is annoying to you, you can turn it off by typing ${ }^{\wedge} \mathrm{V}$. Then any text typed in will write over the text at the cursor position. If you need to insert text somewhere then you can do that by pressing ${ }^{\wedge} V$ again; that turns insert mode back on.

Let's try inserting some text in the following paragraph:

Now is the time for all good men to come to the aid of the party. I still think that this is a really stupid sentence for people to typing for umpty-ump years.

The grammar in that last sentence is kind of shaky, isn't it? Look up at the top line of the main menu and see if there's a little box that says "INSERT ON". If there isn't, press ${ }^{\wedge} V$ until there is. Now move the cursor to the beginning of the word "typing" in the last paragraph and type in "have been". Now it makes more sense.

DELETING TEXT
There are four keys that will delete characters on the screen; ${ }^{\wedge} G, D E L, \wedge^{\wedge} T$ and ${ }^{\wedge} Y$. $\wedge^{\wedge} G$ deletes the character under the cursor. Try that in the next sentence, correcting the misspelled word "Americca" to "America":

We are in the United States of Americca.

Position the cursor on the first "c" in "Americca" and press ^G. It should disappear, leaving an umblemished America.

The DEL key deletes the character to the left of the cursor. It is the one to use if you type the wrong letter in and realize it before typing the next letter; just press DEL and the bad letter vanishes. (Unfortunately, the BACK SPACE key, which is easier to hit, simply backs over the bad character. If insert mode is on, you will tend to accumulate characters to the right of the cursor that you'll push along as you type.)

You can wipe out entire words with the ${ }^{\wedge} T$ key. Position the cursor at the beginning of the word you want to eradicate and press ^T and it will be erased. If you position the cursor in the middle of the word, the part of the word under and to the right of the cursor will be deleted. Try this by removing the word "ugly" in the following sentence:

My ugly sister wears orange Army boots.

Put the cursor on the first letter in the word "ugly", press ^T and notice how the "ugly" disappears. Hmm. . .that sentence is still pretty offensive. This looks like a job for ${ }^{\wedge}$ Y, which erases entire lines. Place the cursor anywhere on that ridiculous line and press $\wedge Y$. Notice that the line disappears, which in this case is a giant leap for mankind.

## REFORMATTING PARAGRAPHS

In the course of inserting and deleting text, you can thoroughly destroy any semblence of margins and formatting in a paragraph. For example, the following paragraph has been altered by adding the words "definitely" and "and decent" to the first line and deleting a batch of text from the third line.

Now is definitely the time for all good and decent men to come to the aid of the party. (I am sure that you are hoping that I am quite through beating this sentence into the ground.)

Notice that the first line hangs over the right margin (you can use the cursor control keys to scroll over to the end of the line if you want) and the third line is too short.

Remember that Wordstar is a what-you-see-is-what-you-get word processor. It will try to print that paragraph that way (with disastrous results). What we need to do is reformat it.

Move the cursor to the beginning of the paragraph and press ${ }^{\wedge}$ B. Notice that the words jump around to conform to the
margins. Occasionally, Wordstar will ask you where you would like to hyphenate a large word during the reformatting process. If it does, use the ${ }^{\wedge} S$ and ${ }^{\wedge} D$ keys to move the cursor around in the word, then press the hyphen key $O R$ simply press ${ }^{\wedge} B$ to tell Wordstar not to hyphenate at all.

If you want to change the margins, you'll have to reformat every paragraph individually. There is a shortcut that may help; the command ${ }^{\wedge} Q Q$ will prompt you to enter a command. Wordstar will then repeat the command until you press any key.

## CHANGING MARGINS AND TABS

When you first begin to edit a new document, Wordstar automatically sets up the margins and tab stops for you. The left margin is automatically set at and the right margin is set at 64. There are many times which you may want to set-up custom margins and/or tab stops. Look now at the line right below the main menu. This is your margin line. The "L" on the left and the "R" on the right signify the left and right margins, respectively. Every five spaces you see an exclamation point (!). These denote tab stops.

Let's now change the margins. Type ^o (not the number zero). On the left hand side of the menu, you will now see a sub-title "Margins \& Tabs". Type an "L". Now type "10" and hit the RETURN key. Notice how the "L" on the margin line has moved in to column 10. We can change the right margin in much
the same way. Type ^OR, then type 55 and the RETURN key. The "R" has now moved in to column 55.

Notice how this paragraph is still set up to the old margins of 0 and 64. Move the cursor to the beginning of this paragraph and type $\wedge^{\wedge} B$ in order for it to reformat itself to the new margins.

CENTERING AND JUSTIFYING TEXT
Wordstar allows you to center text on a line by simply placing the cursor anywhere on that line and typing ^OC. This will center the text according to the margins set at the time. Wordstar allows you to right justify the text in your document (in other words, make the text flush with the right margin). In fact, this is the way Wordstar will normally enter text. In order to do this, Wordstar fills in extra spaces in lines when necessary. If this is annoying to you, you can turn off this feature by typing OJ. You can turn the feature back on by typing ^OJ again. To see if the feature is on or off, type ^o and look at the right hand side of the menu under "More Toggles". If the setting is the way you want it, simply hit the SPACE BAR, if it isn't, type "J". Remember to reformat your paragraphs after you change this setting.

## LINE SPACING

There may be times when you wish to change the line spacing of a document. For instance, this tutorial is single spaced,
while most papers and other documents are double spaced. To change the line spacing, type ^OS, and then a number from 1 to 9 (1 is single spacing, 2 is double spacing, etc.)

## DOT COMMANDS

You saw that typing ".PA" at the beginning of a line forced Wordstar to start a new page. There are many other Dot Commands which tell Wordstar to do different things. Here are just two:

> .$O P$ - Tells Wordstar not to number pages when it prints a document. (Without this command, Wordstar will print page numbers at the center of the bottom of each page.)
> . PNn - Tells Wordstar to begin numbering pages on a print out any time after you have typed ".OP". (By typing ".PN75, for example, Wordstar will begin numbering pages on the printout at 75.$)$

One thing you must remember about using Dot Commands, the "." must be in the first column of a line in order for Wordstar to recognize the command.

OTHER COMMANDS IN OTHER MENUS
Take a look at the right side of the Main Menu. In that space are control commands that will get you at other menus
full of commands. One very important command might be $\wedge \mathrm{J}$, which gets you at the help menu. Press $\wedge \mathcal{J}$ right now to see what is available. The most important command in the Help Menu might be $I$, which tells you what kind of commands are in which menu. Otherwise, just keep following the directions until you are returned to edit mode.

SAVING TEXT AND LEAVING EDIT MODE
The other very important menu for your first session with Wordstar is the Block Menu. The Block menu contains all of the commands for saving your text and leaving Wordstar.

To reach this menu, press ${ }^{\wedge} K$. If you are finished editing you have several choices:

D -- save the file and return to the No-File Menu;
X -- save the file, leave Wordstar and return to DOS.
Q -- discard all changes you have made and return to the No-File menu.

Normally you will use ${ }^{\wedge} \mathrm{KD}$ or $\wedge^{\wedge} \mathrm{KX}$ when you finish editing a document. When you finish reading this tutorial, I ask that you carefully press ${ }^{\text {^KQ }}$ so that all of the errors you have carefully corrected may be preserved for the next person to use this tutorial file.

There is one more option; pressing $S$ saves the file and returns to the edit mode. Why would you want to do this? If
the computer "goes down" right now, all of the changes you have made (or the three chapters of the thesis you've typed) will be lost. This can happen when the power fails or when you make a stupid mistake and delete all of your text (or a large piece of it). If you have periodically saved your text as it is entered, you won't have as many changes to lose as you might have had.

THAT'S ALL THERE IS TO IT!! This is the end of this Wordstar tutorial. Please leave Wordstar by typing ^KX.

[^3]
## APPENDIX E. SUBJECT DEBRIEFING

Thank you very much for your participation in this study. We are hoping that its finding will result in material suitable for publication in the academic literature, and without your cooperation, it would not have been possible.

Prior to Phase One of this study, you were told that its purpose was to investigate computer training methods. This, however, was not its entire purpose. In order to maintain the integrity of the data to be obtained, it was necessary to withhold the entire purpose from you. Now, in accordance with the guidelines set up by the Human Subjects Committee here at Iowa State, we wish to divulge the complete purpose of this study.

This study was designed to look into the phenomenon known as computer anxiety and is part of a master's thesis entitled "Computer anxiety: an examination of its correlates and a test of two possible treatment strategies". The study investigates whether computer anxiety is an identifiable construct by relating it to several known concepts. In Phase One, measures were taken from you on the following variables: Self-esteem, Powerlessness, Trait Anxiety, Personality Rigidity, Locus of Control, Math Anxiety, Computer Knowledge and Computer Anxiety. This was in order to see if computer anxiety was consistently related to any of these other variables in individuals.

In Phase Two, you were instructed in the use of Wordstar by one of two methods: Classroom lecture/demo and interactive tutorial. This was done in order to ascertain which method would be the most effective in training computer anxious individuals in the use of the computer. This part of the study was completed when you were asked to enter a text into a Wordstar document file. Your performance in this activity was measured and then related to your scores in Phase One.

Finally, in Phase Three, the phase you just completed, your level of computer anxiety was re-measured in order to see if your training on Wordstar had any effect on you. Those of you who did not participate in Phases Two and Three were part of a control group in this study to account for any variables external to the study.

As noted previously, it is hoped that this study will be published in the academic literature. If it is, reprints of the article will be available from Dr. McElroy.

Thank you again for your participation.
Kerm Harrington

## APPENDIX $E$. <br> SPSSX PROGRAMS AND DATASETS

## 145

Command> USE PHASEONE
Command> L

1. //PHASEONE JOB I4855, harRINGTON
2. //STEPI EXEC SPSSX
3. //INPUT DD DSN=M.I4855. KERMDAT1, DISP $=$ SHR
4. //OUTPUT DD DSN $=$ M.I4855.PHASE1,DISP=(OLD, KEEP)
5. //SYSIN DD *
6. DATA LIST FILE $=$ INPUT RECORDS $=4$
7. $/ 1$ CARD 2-5 ID 26-34 SEX 52
8. $/ 2$ DEM1 TO DEM3 6-8 ESTI TO EST27 9-35 POW1 TO POW7 36-42

LOC1 TO LOC29 43-71 RIG1 TO RIG9 72-80
13 RIG1O TO RIG24 6-20 EXP 21 KNOW1 TO KNOW2 22-23
DAMB1 TO DAMB2O 24-43 MAU1 TO MAU26 44-69 HOW1 TO HOW1O 70-79 MATH1 80
/4 MATH2 TO MATH12 6-16 TRAIT1 TO TRAIT20 17-36
SET BLANKS $=6$
COMMENT RECODES FOR THE DAMBROT ET AL. INSTRUMENT
RECODE DAMB3 TO DAMB6 $(1=5) \quad(2=4) \quad(4=2) \quad(5=1)$
/DAMB8 TO DAMB10 $(1=5)(2=4)(4=2)(5=1)$
/DAMB12 TO DAMB13 ( $1=5$ ) $(2=4) \quad(4=2) \quad(5=1)$
/DAMB18 TO DAMB19 ( $1=5$ ) $(2=4) \quad(4=2) \quad(5=1)$
COMMENT RECODES FOR THE MAURER INSTRUMENT
RECODE MAUS $(1=6) \quad(2=5) \quad(3=4) \quad(4=3) \quad(5=2) \quad(6=1)$
/MAU7 ( $1=6$ ) $\quad(2=5) \quad(3=4) \quad(4=3) \quad(5=2) \quad(6=1)$
/MAU9 $(1=6) \quad(2=5) \quad(3=4) \quad(4=3) \quad(5=2) \quad(6=1)$
/MAU11 TO MAU12 ( $1=6$ ) $(2=5) \quad(3=4) \quad(4=3) \quad(5=2) \quad(6=1)$
/MAU14 $(1=6) \quad(2=5) \quad(3=4) \quad(4=3) \quad(5=2) \quad(6=1)$
/MAU18 TO MAU25 (1=6) (2=5) (3=4) (4=3) (5=2) (6=1)
COMMENT RECODES FOR NEAL \& SEEMAN INSTRUMENT
RECODE POW1 TO YOW7 ( $1=0$ ) ( $2=1$ )
COMMENT RECODES FOR THE COOPERSMITH INSTRUMENT
RECODE ESTI TO EST3 ( $1=0$ ) ( $2=1$ )
/EST4 TO EST5 $(2=0)$
/EST6 TO EST7 ( $1=0$ ) ( $2=1$ )
/EST8 (2=0)
/EST9 ( $1=0$ ) ( $2=1$ )
/EST10 (2=0)
/ESTII TO EST13 ( $1=0$ ) ( $2=1$ )
/EST14 (2=0)
/EST15 TO EST18 ( $1=0$ ) ( $2=1$ )
/EST19 TO EST2O (2=0)
/EST21 TO EST23 ( $1=0$ ) ( $2=1$ )
/EST24 TO EST26 (2=0)
/EST27 (1=0) (2=1)
COMMENT RECODES FOR ROTTER INSTRUMENT
RECODE LOC2 ( $2=0$ )
/LOC3 TO LOC5 ( $1=0$ ) (2=1)
/LOC6 TO LOC7 ( $2=0$ )
/LOC9 ( $2=0$ )
/LOC1O TO LOC13 ( $1=0$ ) (2=1)
/LOC15 ( $1=0$ ) ( $2=1$ )
/LOC16 TO LOC18 ( $2=0$ )
/LOC2O TO LOC21 ( $2=0$ )

```
\begin{tabular}{llll}
58. & /LOC22 & \((1=0)\) & \((2=1)\) \\
59. & LOC23 & \((2=0)\) & \\
60. & LOC25 & \((2=0)\) & \\
61. & LOC26 & \((1=0)\) & \((2=1)\) \\
62. & LOC28 & \((1=0)\) & \((2=1)\) \\
63. & LOC29 & \((2=0)\) & \\
64. & LOC1 & \((1=9)\) & \((2=9)\) \\
65. & LOC8 & \((1=9)\) & \((2=9)\) \\
66. & LOC14 & \((1=9)\) & \((2=9)\) \\
67. & LOC19 & \((1=9)\) & \((2=9)\) \\
68. & LOC24 & \((1=9)\) & \((2=9)\) \\
69. & LOC27 & \((1=9)\) & \((2=9)\)
\end{tabular}
COMMENT RECODES FOR REHFISCH INSTRUMENT
RECODE RIG1 (2=0)
 /RIG2 (1=0) (2=1)
 /RIG3 (2=0)
 /RIG4 (1=0) (2=1)
 /RIG5 TO RIG7 (2=0)
 /RIG8 TO RIG11 (1=0) (2=1)
 /RIG12 TO RIG2O (2=0)
 /RIG21 (}1=0\mathrm{) (2=1)
 /RIG22 TO RIG24 (2=0)
COMMENT RECODES FOR THE FENNEMA & SHERMAN INSTRUMENT
RECODE MATH7 TO MATH12 (1=5) (2=4) (4=2) (5=1)
COMMENT RECODES FOR THE SPIELBERGER ET AL INSTRUMENT
RECODE TRAIT1 (1=4) (2=3) (3=2) (4=1)
 /TRAIT3 (1=4) (2=3) (3=2) (4=1)
 /TRAIT6 TO TRAIT7 (1=4) (2=3) (3=2) (4=1)
 /TRAIT10 (1=4) (2=3) (3=2) (4=1)
 /TRAIT13 TO TRAIT14 (1=4) (2=3) (3=2) (4=1)
 /TRAIT16 (1=4) (2=3) (3=2) (4=1)
 /TRAIT19 (1=4) (2=3) (3=2) (4=1)
COMMENT SCORE ON THE HOWARD INSTRUMENT
COMPUTE HOW = O
IF (HOW1 EQ 3) HOW = HOW + 1
IF (HOW2 EQ 3) HOW = HOW + 1
IF (HOW3 EQ 1) HOW = HOW + 1
IF (HOW4 EQ 2) HOW = HOW + I
IF (HOW5 EQ 1) HOW = HOW + 1
IF (HOW6 EQ 1) HOW = HOW + 1
IF (HOW7 EQ 2) HOW = HOW + 1
IF (HOW8 EQ 3) HOW = HOW + 1
IF (HOW9 EQ 2) HOW = HOW + 1
IF (HOW1O EQ 2) HOW = HOW + 1
COMMENT SCORE ON DAMBROT INSTRUMENT
COUNT NMISS = DAMB1 TO DAMB2O (6)
COMPUTE DAMB = SUM(DAMB1 TO DAMB20)
COMPUTE DAMB = DAMB - 5 * NMISS
IF (NMISS GT 5) DAMB =0
IF (NMISS LE 5) DAMB = DAMB/(20-NMISS)
MISSING VALUES DAMB (-999)
COMPUTE DCA =0
IF (DAMB GT 2.200) DCA = 2
IF (DAMB LE 2.200 AND DAMB GT 0) DCA = 1
COMMENT SCORE ON MAURER INSTRUMENT
```

119. COUNT NMISS $=$ MAU1 TO MAU26 (6)

120. COMPUTE TRAIT = TRAIT - 12 * NMISS
121. IF (NMISS GT 12) MAU $=0$
122. IF (NMISS LE 12) MAU $=$ MAU/26
123. MISSING VALUES MAU (-999)
124. COMPUTE MCA $=0$
125. IF (MAU GT 2.538) MCA $=2$
126. IF (MAU LE 2.538 AND MAU GT 0) MCA $=1$
127. 
128. 

COUNT NMISS $=$ TRAITI TO TRAIT20 (6)
131. COMPUTE TRAIT $=$ SUM (TRAIT1 TO TRAIT20)
132. COMPUTE TRAIT $=$ TRAIT $-5 *$ NMISS
133. IF (NMISS GT 5) TRAIT $=0$
134. IF (NMISS LE 5) TRAIT $=$ TRAIT/(20-NMISS)
135. MISSING VALUES TRAIT (-999)
136.
137. COMMENT SCORE ON NEAL \& SEEMAN INSTRUMENT
138. COUNT NMISS $=$ POW1 TO POW7 (6)
139. COMPUTE POW $=$ SUM (POW1 TO POW7)
140. COMPUTE POW $=$ POW -1 * NMISS
141. IF (NMISS GT 1) POW $=0$
142. IF (NMISS LE 1) POW $=$ POW/(7-NMISS)
143. MISSING VALUES POW (-999)
144.
145. COMMENT SCORE FOR COOPERSMITH INSTRUMENT
146. COUNT NMISS = EST1 TO EST27 (6)
147. COMPUTE EST $=$ SUM (ESTI TO EST27)
148. COMPUTE EST = EST - 7 * NMISS
149. IF (NMISS GT 7) EST $=0$
150. IF (NMISS LE 7) EST $=$ EST/(27-NMISS)
151. MISSING VALUES EST (-999)
152.
153. COMMENT SCORE FOR ROTTER INSTRUMENT
154. COMPUTE LOC = 0
155. COMPUTE VALID $=0$
156. DO REPEAT L = LOC1 TO LOC29
157. DO IF (L NE 6)
158. IF (L NE 9) LOC = LOC + L
159. COMPUTE VALID $=$ VALID +1
160. END IF
161. END REPEAT
162. DO IF (VALID GE 15 AND VALID LT 23)
163. COMPUTE LOC $=$ LOC/VALID
164. ELSE
165. COMPUTE LOC $=\mathrm{LOC} / 23$
166. END IF
167. IF (VALID LT 21) LOC $=-999$
168.
169.
170. COUNT NMISS $=$ RIG1 TO RIG24 (6)
171. COMPUTE RIG $=$ SUM (RIG1 TO RIG24)
172. COMPUTE RIG $=$ RIG $-6 *$ NMISS
173. IF (NMISS GT 6) RIG $=0$
174. IF (NMISS LE 5) RIG $=$ RIG/(24-NMISS)
175. MISSING VALOES RIG (-999)
176.
177. COMMENT SCORE ON FENNEMA \& SHERMAN SCALE
178. COUNT NMISS $=$ MATH1 TO MATH12 (6)
179. COMPUTE MATH $=$ SUM (MATH1 TO MATHI2)
181. IF (NMISS GT 3) MATH =0
183. MISSING VALUES MATH (-999)
184.
185.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213
214.
215.
216
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
236.
237.
238.
239.
240.

```
```

```
180. COMPUTE MATH = MATH - 3 * NMISS
```

```
180. COMPUTE MATH = MATH - 3 * NMISS
182. IF (NMISS LE 3) MATH = MATH/(12-NMISS)
182. IF (NMISS LE 3) MATH = MATH/(12-NMISS)
186. COMMENT SCALE RELIABILITIES
186. COMMENT SCALE RELIABILITIES
234. SCALE (TANXITEY) = TRAITI TO TRAIT20/
234. SCALE (TANXITEY) = TRAITI TO TRAIT20/
235. STATISTICS 1 2 3 4 5 6 7 8 9 10
235. STATISTICS 1 2 3 4 5 6 7 8 9 10
```

COMMENT COOPERSMITH INSTRUMENT

```
COMMENT COOPERSMITH INSTRUMENT
RELIABILIY VARIABLES = ESTI TO EST27/
RELIABILIY VARIABLES = ESTI TO EST27/
 SCALE (ESTEEM) = EST1 TO EST27/
 SCALE (ESTEEM) = EST1 TO EST27/
STATISTICS 1 2 3 4 5 6.7 8 9 10
STATISTICS 1 2 3 4 5 6.7 8 9 10
COMMENT NEAL & SEEMAN INSTRUMENT
COMMENT NEAL & SEEMAN INSTRUMENT
RELIABILITY VARIABLES = POW1 TO POW7/
RELIABILITY VARIABLES = POW1 TO POW7/
 SCALE (POWER) = POW1 TO POW7/
 SCALE (POWER) = POW1 TO POW7/
STATISTICS 1 2 3 4 5 678 9 10
STATISTICS 1 2 3 4 5 678 9 10
COMMENT ROTTER INSTRUMENT
COMMENT ROTTER INSTRUMENT
RELIABILITY VARIABLES = LOC1 TO LOC29/
RELIABILITY VARIABLES = LOC1 TO LOC29/
 SCALE (CONTROL) = LOC2 TO LOC7 LOC9 TO LOC13 LOC15 TO LOCI8
 SCALE (CONTROL) = LOC2 TO LOC7 LOC9 TO LOC13 LOC15 TO LOCI8
 LOC20 TO LOC23 LOC25 TO LOC26 LOC28 TO LOC29/
 LOC20 TO LOC23 LOC25 TO LOC26 LOC28 TO LOC29/
STATISTICS 1 2 345678 910
STATISTICS 1 2 345678 910
COMMENT REHFISCH INSTRUMENT
COMMENT REHFISCH INSTRUMENT
RELIABILITY VARIABLES = RIGI TO RIG24/
RELIABILITY VARIABLES = RIGI TO RIG24/
 SCALE (RIGIDITY) RIG1 TO RIG24/
 SCALE (RIGIDITY) RIG1 TO RIG24/
STATISTICS 1 2 3 4 5 67% 9 10
STATISTICS 1 2 3 4 5 67% 9 10
COMMENT DAMBROT ET AL. INSTRUMENT
COMMENT DAMBROT ET AL. INSTRUMENT
RELIABILITY VARIABLES = DAMB1 TO DAMB20/
RELIABILITY VARIABLES = DAMB1 TO DAMB20/
 SCALE (ATTITUDES) = DAMB1 TO DAMB2O/
 SCALE (ATTITUDES) = DAMB1 TO DAMB2O/
STATISTICS 1 2 345 678 910
STATISTICS 1 2 345 678 910
COMMENT MAURER INSTRUMENT
COMMENT MAURER INSTRUMENT
RELIABILITY VARIABLES = MAU1 TO MAU26/
RELIABILITY VARIABLES = MAU1 TO MAU26/
 SCALE (CANXIETY) = MAU1 TO MAU26/
 SCALE (CANXIETY) = MAU1 TO MAU26/
STATISTICS 1 2 3 4 5 678 9 10
STATISTICS 1 2 3 4 5 678 9 10
COMMENT FENNEMA & SHERMAN INSTRUMENT
COMMENT FENNEMA & SHERMAN INSTRUMENT
RELIABILITY VARIABLES = MATH1 TO MATH12/
RELIABILITY VARIABLES = MATH1 TO MATH12/
 SCALE (MANXIETY) = MATH1 TO MATH12/
 SCALE (MANXIETY) = MATH1 TO MATH12/
STATISTICS 1 2 3 4 5 67 8 9 10
STATISTICS 1 2 3 4 5 67 8 9 10
COMMENT SPIELBERGER ET AL. INSTRUMENT
COMMENT SPIELBERGER ET AL. INSTRUMENT
RELIABILITY VARIABLES = TRAIT1 TO TRAIT20/
RELIABILITY VARIABLES = TRAIT1 TO TRAIT20/
 SCALE (TANXITEY) = TRAIT1 TO TRAIT2O/
 SCALE (TANXITEY) = TRAIT1 TO TRAIT2O/
COMMENT HOWARD INSTRUMENT
COMMENT HOWARD INSTRUMENT
RELIABILITY VARIABLES = HOW1 TO HOW10/
RELIABILITY VARIABLES = HOW1 TO HOW10/
 SCALE (KNOWLEDGE) = HOW1 TO HOW1O
```

    SCALE (KNOWLEDGE) = HOW1 TO HOW1O
    ```
```

    241. STATISTICS 12 34 5 67 8 910
    242.
    243. COMMENT SAVE DATASET TO FILE PHASEI
    244.
    245. SORT CASES BY ID
    246. FILE HANDLE PHASEI
    247. FILE LABEL THESIS PhASE ONE DATA
    248. DOCUMENT THIS IS THE DATA FROM PHASE ONE OF K. V. HARRINGTON'S
            THESIS RESEARCH. THE fILE CONTAINS INFORMATION OBTAINED
            FROM STUDENTS IN A MASS lECTURE OF AN INTRODUCTORY
            MANAGEMENT CLASS at IOWA STATE UNIVERSITY.
    SAVE OUTFILE = OUTPUT/RENAME (DAMB=DAMBA) (MAU=MAUA)/
        KEEP = CARD, SEX, ID, EST, POW, LOC, RIG, DAMBAA, MAUA,
            HOW, MATH, TRAIT, EXP, DEM3, KNOW1, KNOW2, MCA,
            DCA, DEM1, DEM2/MAP
        FINISH
        /*
    257
    Command> USE PHASETWO CLE
Command> L
1. //PHASETWO JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
//INPUT DD DSN=M.I4855.KERMDAT2,DISP=SHR
//OUTPUT DD DSN=M.I4855.PHASE2,DISP=(OLD,KEEP)
//SYSIN DD *
DATA LIST FILE = INPUT RECORDS = 2 /* PHASE TWO DATA (KERMDAT2)
/1 CARD 2-5 ID 26-35 GROUP 36 QUEST 37-38 RATERI 39-40
SEX 52 RATER2 53-54
/2 STATE1 TO STATE2O 6-25 DAMB1 TO DAMB2O 26-45 MAU1 TO MAU26 46-71
USAGE }7
SELECT IF (CARD NE 63)
SET BLANKS = 6 /* RESET INVALID RESPONSES */
COMMENT RECODES FOR RATERS
RECODE RATER2 (66=0)
COMMENT RECODES FOR USAGE
RECODE USAGE ( }1=4=4, (2=3) (3=2) {4=1
COMMENT RECODES FOR THE SPIELBERGER ET AL. INSTRUMENT
RECODE STATE1 (1=4) (2=3) (3=2) (4=1)
/STATE2 (1=4) (2=3) (3=2) (4=1)
/STATE5 (1=4) (2=3) (3=2) (4=1)
/STATE8 (1=4) (2=3) (3=2) (4=1)
/STATE10 (1=4) (2=3) (3=2) (4=1)
/STATE11 (1=4) (2=3) (3=2) (4=1)
/STATE15 (1=4) (2=3) (3=2) (4=1)
/STATE16 (1=4) (2=3) (3=2) (4=1)
/STATE19 (1=4) (2=3) (3=2) (4=1)
/STATE2O (1=4) (2=3) (3=2) (4=1)
COMmENT RECODES FOR ThE DAmbrot et al. instrument
RECCDE DAMB3 TO DAMB6 (1=5) (2=4) (4=2) (5=1)
/DAMB8 TO DAMB1O ( }1=5\mathrm{ ) (2=4) (4=2) (5=1)
/DAMB12 TO DAMB13 (1=5) (2=4) (4=2) (5=1)
/DAMB18 TO DAMB19 (1=5) (2=4) (4=2) (5=1)
COMMENT RECODES FOR THE MAURER INSTRUMENT

```

```

    102. GROUP = 2: INDIVIDUALS EXPOSED TO AN INTERACTIVE TUTORIAL
    103. GROUP = 3: CONTROL GROUP
    104. SAVE OUTFILE = OUTPUT/RENAME (DAMB=DAMBB) (MAU=MAUB)/
    105. KEEP = CARD, SEX, ID, DAMBB, MAUB, STATE, RATERI, RATER2, QUEST,
    106. GROUP, USAGE, MCA, DCA, ERRORS/MAP
    107. FINISH
    108. /*
    Command> USE STATS CLE
Command> L
1. //STATS JOB I4855,HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I48S5.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. //SYSIN DD *
6. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
7. MISSING VALUES ALL (-999)
8. SORT CASES BY ID
9. FREQUENCIES VARIABLES = EST LOC RIG MATH STATE TRAIT
10. DAMBA DAMBB MAUA MAUB HOW EXP POW/STATISTICS = ALL
11. FINISH
12. /*
Command> USE PEARSONS CLE
Command> L
1. //PEARSONS JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. //SYSIN DD *
6. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
7. MISSING VALUES ALL (-999)
8. SORT CASES BY ID
9. PEARSON CORR DAMBA DAMBB MAUA MAUB TRAIT STATE EST LOC RIG HOW MATH
EXP QUEST RATER1 RATER2 ERRORS USAGE
11. PEARSON CORR DAMBA DAMBB MAUA MAUB TRAIT STATE EST LOC RIG HOW MATH
EXP QUEST RATERI RATER2 ERRORS USAGE
OPTIONS 5
FINISH
/*
Command> USE ANOVA CLE
Command> L
1. //ANOVA JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
//ONE DD DSN=M.I4855.PHASE1,DISP=SHR
//TWO DD DSN=M.I4855.PHASE2,DISP=SHR
//SYSIN DD *
MATCH FILES FILE=ONE/FILE=TWO/RENAME=(MCA=MCA2) (DCA=DCA2)/BY=ID
MISSING VALUES ALL (-999)
COMPUTE MATCH = 2
IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH = 1
IF (DEM3,EQ 2 AND GROUP EQ 2) MATCH = 1
VARIABLE LABELS DCA2 'DAMBROT COMPUTER ATTITUDES (PHASE TWO)'
MCA2 'MAURER COMPUTER ANXIETY (PHASE TWO)'
DEM3 'PREFERRED MODE OF LEARNING'
VALUE LABELS GROUP 1 'DISCUSSION' 2 'TUTORIAL' 3 'CONTROL'/
DCA2 1 'LOW CA' 2 'HIGH CA'/

```

\section*{152}
```

                                    MCA2 1 'LOW CA' 2 'HIGH CA'/
                                    DEM3 1 'DISCUSSION' 2 'TUTORIAL'/
            MATCH 1 'MATCH' 2 'NON-MATCH'
    CROSSTABS VARIABLES = DCA2 (1,2) GROUP (1,3)/
                TABLES = GROUP BY DCA2
    CROSStABS VAŔIABLES = MCA2 (1,2) GROUP (1,3)/
                        TABLES = GROUP BY MCA2
    ANOVA ERRORS BY DCA (1,2) GROUP (1,2) MATCH (1,2)
            IQUEST BY DCA (1,2) GROUP (1,2) MATCH (1,2)
            /DAMBB BY DCA (1,2) GROUP (1,2) MATCH (1,2)
            /MAUB BY DCA (1,2) GROUP (1,2) MATCH (1,2)
            /USAGE BY DCA (1,2) GROUP (1,2) MATCH (1,2)
    StATISTICS 3
    ANOVA ERRORS BY MCA (1,2) GROUP (1,2) MATCH (1,2)
            /QUEST BY MCA (1,2) GROUP (1,2) MATCH (1,2)
            /DAMBB BY MCA (1,2) GROUP (1,2) MATCH (1,2)
            /MAUB BY MCA (1,2) GROUP (1,2) MATCH (1,2)
            /USAGE BY MCA (1,2) GROUP (1,2) MATCH (1,2)
    STATISTICS 3
    FINISH
    /*
    Command> USE ANOVAROY CLE
Command> L
//ANOVA2 JOB I4855,HARRINGTON
//STEP1 EXEC SPSSX
//ONE DD DSN=M.I4855.PHASE1,DISP=SHR
//TWO DD DSN=M.I4855.PHASE2,DISP=SHR
//SYSIN DD *
MATCH FILES FILE=ONE/FILE=TWO/RENAME=(MCA=MCA2) (DCA=DCA2)/BY=ID
MISSING VALUES ALL (-999)
COMPUTE CHOICE = 5
IF (DEM3 EQ 1 AND GROUP EQ 1) CHOICE = 1
IF (DEM3 EQ 2 AND GROUP EQ 1) CHOICE = 2
IF (DEM3 EQ 1 AND GROUP EQ 2) CHOICE = 2
IF (DEM3 EQ 2 AND GROUP EQ 2) CHOICE = 3
VARIABLE LABELS DCA2 'DAMBROT COMPUTER ATTITUDES (PHASE TWO)'
MCA2 'MAURER COMPUTER ANXIETY (PHASE TWO)'
DEm3 'PREFERRED MODE OF LEARNING'
VALUE LABELS GROUP 1 'DISCUSSION' 2 'TUTORIAL' 3 'CONTROL'/
DCA2 1 'LON CA' 2 'HIGH CA'/
MCA2 1 'LOW CA' 2 'HIGH CA'/
DEM3 1 'DISCUSSION' 2 'TUTORIAL'/
CHOICE 1 'MATCH DISS' 2 'NON-MATCH'
3 'MATCH TUT'
CROSStABS VARIABLES = DCA2 (1,2) GROUP (1,2)/
TABLES = GROUP BY DCA2
CROSSTABS VARIABLES = MCA2 (1,2) GROUP (1,2)/
TABLES = GROUP BY MCA2
CROSSTABS VARIABLES = MCA2 (1,2) CHOICE (1,3)/
TABLES = CHOICE BY MCA2
ANOVA ERRORS BY DCA (1,2) GROUP (1,2) CHOICE (1,3)
/QUEST BY DCA (1,2) GROUP (1,2) CHOICE (1,3)
/DAMBB BY DCA (1,2) GRCOP (1,2) CHOICE (1,3)
/MAOB BY DCA (1,2) GROUP (1,2) CHOICE (1,3)
IUSAGE BY DCA (1,2) GROUP (1,2) CHOICE (1,3)
STATISTICS 3
ANOVA ERRORS BY MCA (1,2) GROUP (1,2) CHOICE (1,3)
/QUEST BY MCA (1,2) GROUP (1,2) CHOICE (1,3)
/DAMBB BY MCA (1,2) GROUP (1,2) CHOICE (1,3)

```
```

                            /MAUB BY MCA (1,2) GROUP (1,2) CHOICE (1,3)
                            /USAGE BY MCA (1,2) GROUP (1,2) CHOICE (1,3)
        STATISTICS 3
        FINISH
        /*
    Command> USE ANOETA CLE
Command> L
1. //ANOVA3 JOB I4855,HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
//TWO DD DSN=M.I4855.PHASE2,DISP=SHR
//SYSIN DD *
MATCH FILES FILE=ONE/FILE=THO/RENAME=(MCA=MCA2) (DCA=DCA2)/BY=ID
MISSING VALUES ALL (-999)
COMPUTE MATCH = 2
IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH = 1
IF (DEM3 EQ 2 AND GROUP EQ 2) MATCH = 1
VARIABLE LABELS DCA2 'DAMBROT COMPUTER ATTITUDES (PhASE TWO)'
MCA2 'MAURER COMPUTER ANXIETY (PHASE TWO)'
dEm3 'PREFERRED MODE OF LEARNING'
VALUE LABELS GROUP 1 'DISCUSSION' 2 'TUTORIAL' 3 'CONTROL'/
DCA2 1 'LOW CA' 2 'HIGH CA'/
MCA2 1 'LOW CA' 2 'HIGH CA'/
DEM3 1 'DISCUSSION' 2 'TUTORIAL'/
MATCH 1 'MATCH' 2 'NON-MATCH'
CROSSTABS VARIABLES = DCA2 (1,2) GROUP (1,3)/
TABLES = GROUP BY DCA2
CROSSTABS VARIABLES = MCA2 (1,2) GROUP (1,3)/
TABLES = GROUP BY MCA2
ANOVA ERRORS BY DCA (1,2) GROUP (1,2) MATCH (1,2)
IOUEST BY DCA (1,2) GROUP (1,2) MATCH (1,2)
/DAMBB BY DCA (1,2) GRCOP (1,2) MATCH (1,2)
/MAUB BY DCA (1,2) GROUP (1,2) MATCH (1,2)
IUSAGE BY DCA (1,2) GROOP (1,2) MATCH (1,2)
STATISTICS 1
ANOVA ERRORS BY MCA (1,2) GROUP (1,2) MATCH (1,2)
/QUEST BY MCA (1,2) GROUP (1,2) MATCH (1,2)
/DAMBB BY MCA (1,2) GROUP (1,2) MATCH (1,2)
/MAUB BY MCA (1,2) GROUP (1,2) MATCH (1,2)
/USAGE BY MCA (1,2) GROUP (1,2) MATCH (1,2)
STATISTICS 1
FINISH
/*
Command> USE ONEWAY CLE
Command> L

```
1. //ONEWAY JOB I4855, HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. //SYSIN DD *
6. GET FILE = ONE/
 RENAME \(=(M C A=M C A 1) \quad(D C A=D C A I)\)
 GET FILE = TWO/
 RENAME \(=(M C A=M C A 2) \quad\) (DCA \(=D C A 2)\)
 MATCH FILES FILE=ONE/FILE=*/BY=ID
 MISSING VALUES ALL (-999)
 VARIABLE LABELS DCA2 'DAMBROT COMPUTER ATTITUDES (2)'
```

    13. MCA2 'MAURER COMPUTER ANXIETY (2)'
    14. VALUE LABELS GROUP 1 'DISCUSSION' 2 'TUTORIAL'/
    MCA2 1 'LOW CA' 2 'HIGH CA'/
    DCA2 1 'LOW CA' 2 'HIGH CA'
    CROSSTABS VARIABLES = MCA2 (1,2) GROUP (1,2)/
    TABLES = GROUP BY MCA2
    CROSSTABS VARIABLES = DCA2 (1,2) GROUP (1,2)/
    TABLES = GROUP BY DCA2
    ONEWAY RATER1 BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY RATER2 BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY QUEST BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY STATE BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY TRAIT BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY DAMBB BY GROUP (1,2)/
    STATISTICS ALL
    ONEWAY MAUB BY GROUP (1,2)/
    STATISTICS ALL
    FINISH
    /*
    Command> USE MANOVA CLE
Command> L

```
1. //MANOVA JOB I4855,HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. //SYSIN DD *
6. MATCH FILES FILE=ONE/FILE=TWO/RENAME=(MCA=MCA2) (DCA=DCA2)/BY=ID
7. COMPUTE MATCH \(=2\)
8. IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH \(=1\)
9. IF (DEM3 EQ 2 AND GROUP EQ 21 MATCH \(=1\)
10. MANOVA ERRORS, QUEST, DAMBB, MAUB, USAGE BY DCA \((1,2)\) GROUP \((1,2)\) MATCH \((1,2)\)
11. MANOVA ERRORS, QUEST, DAMBB, MAUB, USAGE BY MCA \((1,2)\) GROUP (1,2) MATCH (1, 2)
12. FINISH
13. /*

Command> USE REGRES6
Commands L
\begin{tabular}{|c|c|}
\hline 1. & //REGRES6 JOB I4855, HARRINGTON \\
\hline 2. & //STEP1 EXEC SPSSX \\
\hline 3. & //ONE DD DSN=M.I4855.PHASE1,DISP=SHR \\
\hline 4 & //TWO DD DSN=M.I4855.PHASE2,DISP=SHR \\
\hline 5 & //SYSIN DD * \\
\hline 6. & MATCH FILES FILE=ONE/FILE=TWO/BY=ID \\
\hline 7 & MISSING VALUES ALL (-999) \\
\hline 8 & COMPUTE MATCH \(=2\) \\
\hline 9. & IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH = 1 \\
\hline 10. & IF (DEM3 EQ 2 AND GROUP EQ 2) MATCH = 1 \\
\hline 11 & REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT DAMBB \\
\hline 12. & HOW EXP SEX GROUP \\
\hline & MATCK/ \\
\hline 14 & DEPENDENT \(=\) DAMBB/STEPWISE/FORWARD \\
\hline 15. & REGRESSION VARIABLES \(=\) EST LOC RIG MATH STATE TRAIT MAUB \\
\hline 16. & HOW EXP SEX GROUP \\
\hline
\end{tabular}
```

    17. MATCH/
    18. DEPENDENT = MAUB/STEPWISE/FORWARD
    19. REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT QUEST
        HOW EXP SEX GROUP
        MATCH/
    DEPENDENT = QUEST/STEPWISE/FORWARD
    REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT USAGE
        HOW EXP SEX GROUP
        MATCH/
    DEPENDENT = USAGE/STEPWISE/FORWARD
    27. FINISH
    28. /*
    Command> USE REGRES7 ClE
Command> L
1. //REGRES7 JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
//TWO DD DSN=M.I4855.PHASE2,DISP=SHR
//SYSIN DD *
MATCH FILES FILE=ONE/FILE=TWO/BY=ID
MISSING VALUES ALL (-999)
COMPUTE MATCH = 2
IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH = 1
IF (DEM3 EQ 2 AND GROOP EQ 2) MATCH = 1
REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT DAMBA DAMBB
HOW EXP SEX GROUP
MATCH/
DEPENDENT = DAMBB/STEPWISE/FORWARD
REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT MAUA MAUB
HOW EXP SEX GROUP
MATCH/
DEPENDENT = MAUB/STEPWISE/FORWARD
REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT QUEST DAMBA MAUA
HOW EXP SEX GROUP
MATCH/
DEPENDENT = QUEST/STEPWISE/FORWARD
REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT USAGE DAMBA MAUA
HOW EXP SEX GROUP
MATCH/
DEPENDENT = USAGE/STEPWISE/FORWARD
FINISH
/*
Command> USE REGRES8 CLE

```
Command> L
 1. //REGRES8 JOB I4855,HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855. PHASE2,DISP=SHR
5. //SYSIN DD *
6. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
7. MISSING VALUES ALL (-999)
8. COMPUTE MATCH \(=2\)
9. IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH \(=1\)
10. IF (DEM3 EQ 2 AND GROUP EQ 2) MATCH \(=1\)
11. REGRESSION VARIABLES \(=\) EST LOC RIG MATH STATE TRAIT MAUA DAMBB
12.
13.
 HOW EXP SEX GROUP
 MATCH/
```

    14. DEPENDENT = DAMBB/STEPWISE/FORWARD
    15. REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT DAMBA MAUB
                        HOW EXP SEX GROUP
                        MATCH/
                            DEPENDENT = MAUB/STEPWISE/FORWARD
    REGRESSION VARIABLES = est loc rig math state trait damba maua dambb
                        HOW EXP SEX GROUP
                        MATCH/
            DEPENDENT = DAMBB/STEPWISE/FORWARD
        REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT DAMBA MAUA MAUB
                        HOW EXP SEX GROUP
                        MATCH/
                            DEPENDENT = MAUB/STEPWISE/FORWARD
    FINISH
    /*
    Command> USE CRUM CLE
Command> L

```
 1. //REGCRUM JOB I4855, HARRINGTON
 2. //STEPI EXEC SPSSX
 //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
 //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
 //SYSIN DD *
 MATCH FILES FILE=ONE/FILE=TWO/BY=ID
 MISSING VALUES ALL (-999)
 REGRESSION VARIABLES = MATE STATE MAUA MAUB/
 STATISTICS=ALL/
 DEPENDENT = MAUB/
 ENTER STATE MATH/ENTER MAUA/
 DEPENDENT = MAUB/
 ENTER MAUA/ENTER STATE MATH/
 DEPENDENT = MAUB/
 ENTER MAUA/ENTER STATE/
 regression variables = math state damba dambs/
 STATISTICS = ALL/
 DEPENDENT = DAMBB/
 enter state math/enter damba/
 DEPENDENT = DAMBB/
 ENTER DAMBA/ENTER STATE MATH/
 DEPENDENT = DAMBB/
 ENTER DAMBA/ENTER STATE/
 FINISH
 /*
Command> USE TTEST CLE
Command> L
 1. //TTEST JOB I4855, HARRINGTON
 2. //STEP1 EXEC SPSSX
 3. \(/ /\) ONE DD \(D S N=M . I 4855\). PHASEI, DISP \(=S H R\)
 4. //TWO DD DSN \(=M .14855\). PHASE2,DISP=SHR
 5. //SYSIN DD *
 6. GET FILE = ONE
 7. GET FILE \(=\) TWO
 8. MATCH FILES FILE=ONE/FILE \(=\star / B Y=I D\)
 9. MISSING VALUES ALL (-999)
 10. SORT CASES BY ID
 11. \(\quad\) T-TEST GROUPS \(=\) SEX/VARIABLES \(=\) MATH STATE TRAIT DAMBA MAUA DAMBB MAUB
 12. \(T\)-TEST GROUPS \(=\) GROUP (3)/VARIABLES \(=\) DAMBB MAUB TRAIT
 13. T-TEST PAIRS \(=\) DAMBA DAMBB
```

    14. T-TEST PAIRS = MAUA MAUB
    15. SELECT IF (GROUP EQ 3)
    16. T-TEST PAIRS = DAMBA DAMBB
    17. T-TEST PAIRS = MAUA MAUB
    18. FINISH
    19. /*
    Command> USE NEWTST CLE
Command> L
1. //TTEST2 JOB I4855, HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
6. MISSING VALUES ALL (-999)
7. SELECT IF (DEM3 EQ 1 AND GROUP EQ 1)
8. TTEST GROUPS = MCA/VARIABLES = USAGE
9. TTEST PAIRS = MAUA MAUB
10. FINISH
11. /*
Command> USE QTEST
Command> L
1. //TTEST3 JOB I4855,HARRINGTON
2. //STEP1 EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
6. MISSING VALUES ALL (-999)
7. TTEST GROUPS=SEX/VARIABLES=QUEST
8. FINISH
9. /*
Command> OSE CORRI CLE
Command> L
1. //CORR1 JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. //SYSIN DD *
6. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
7. MISSING VALUES ALL (-999)
8. SORT CASES BY ID
9. pEARSON CORR DAMBA DAMBB MAUA MAUB TRAIT STATE EST LOC RIG HOW MATH
EXP QUEST RATER1 RATER2 ERRORS WITH USAGE
pEARSON CORR DAMBA DAMBB MAUA MAUB TRAIT STATE EST LOC RIG HOW MATH
EXP QUEST RATERI RATER2 ERRORS USAGE
OPTIONS 5
FINISH
/*
Command> USE INDEX CLE
Command> L

```
 1. //INDEX JOB I4855, HARRINGTON
 2. //STEPI EXEC SPSSX
 3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
 4. //TWO DD DSN=M.14855.PHASE2,DISP \(=S H R\)
```

    5. //SYSIN DD *
    MATCH FILES FILE=ONE/FILE=TWO/BY=ID
    7. MISSING VALUES ALL (-999)
    8. COMPUTE MATCH = 2
    9. IF (DEM3 EQ 1 AND GROUP EQ 1) MATCH = 1
    10. IF (DEM3 EQ 2 AND GROUP EQ 2) MATCH = 1
    11. COMPUTE INDEX = QUEST + ERRORS
    13. REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT MAUA DAMBA
                                    HOW EXP SEX GROUP
                                    MATCH INDEX/
                                    CRITERIA=PIN(.06)/
                                    DEPENDENT = INDEX/STEPWISE/EORWARD
    ANOVA INDEX BY DCA (1,2) GROUP (1,2) MATCH (1,2)
    STATISTICS 3
    ANOVA INDEX BY MCA (1,2) GROUP (1,2) MATCH (1,2)
    STATISTICS 3
    EINISH
    /*
    Command> USE DEMO CLE
Command> L
1. //DEMO JOB I4855,HARRINGTON
2. //STEPI EXEC SPSSX
3. //ONE DD DSN=M.I4855.PHASE1,DISP=SHR
4. //TWO DD DSN=M.I4855.PHASE2,DISP=SHR
5. MATCH FILES FILE=ONE/FILE=TWO/BY=ID
6. MISSING VALUES ALL (6)
7. FREQUENCIES VARIABLES = DEM1 DEM2 DEM3
8. PEARSON CORR DEM1 WITH DAMBA MAUA DAMBB MAUB
9. PEARSON CORR DEM2 WITH DAMBA MAUA DAMBB MAUB
10. REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT
HOW EXP SEX GROUP DEM1 DEM2
DAMBB/
DEPENDENT = DAMBB/STEPWISE
REGRESSION VARIABLES = EST LOC RIG MATH STATE TRAIT
HOW EXP SEX GROUP DEM1 DEM2
MAUB/
DEPENDENT = MAUB/STEPWISE
FINISH
/*
Command> USE KERMDAT1 CLE
Command> L UNN

```
```

1 020801 0514591

```
1 020801 0514591
1451111122212112212212112222122222122222211112212212122112222212212121211122
1451111122212112212212112222122222122222211112212212122112222212212121211122
12222221212111111311124444144422212244443225 25352552422455555355132424443443
12222221212111111311124444144422212244443225 25352552422455555355132424443443
13444333343422222222222232322332
13444333343422222222222232322332
2 900556 1
2 900556 1
2341211112222121212212112221112222212222121212111112122211112222212122221211
2341211112222121212212112221112222212222121212111112122211112222212122221211
2122221211221222512225544255525524255452222525252552532225555545233121422234
2122221211221222512225544255525524255452222525252552532225555545233121422234
23444422443222212232221132232222
23444422443222212232221132232222
3 907720 0605652
3 907720 0605652
34522212212221122211111112122221111122 222 2122212121212111222222 1121211112
34522212212221122211111112122221111122 222 2122212121212111222222 1121211112
32112111111111111355125545255313414244422222525252552422255555255223421423433
32112111111111111355125545255313414244422222525252552422255555255223421423433
32444234224422222122232322323324
32444234224422222122232322323324
4 906484 1022632
```

4 906484 1022632

```
```

43512121122121121121222122212122211111212 11122211122122212212222222111211212
42211112121111223331254442424424211444221214151414414211444445542221413424442
42424244454432421121242232232231
5 849204 092364115
52311111112112221211112211122111121122122221121122122111111122212222122111122
5221212111211111321214434232414222243323124534233433422233345422322121221344
54244323232332232223223322322222
6 62251 0610651
6351211111212122122122122221212212122222221212112222111112222222211121221122
6222212211121222321214544244534424355323224425353453522345555544233424423431
62134255555521222131132223211232
7 846151 0624651
7541212112112212222221112221112122112122212122111211121112211212222121211212
7211211212221121311224423322323224444343343535244433333343445233223413423343
73432234444332431232242243142242
8 020764 1
8442211112211122212122211221212112121221212212111122122112112222212122222211
8212212121221122411213434333424322144432232442442343432223254422242114422441
81221155444531321332231133232331
9 067617 1
9 1222122212121212221112221212122111211112122212112112112121222212212122212
9112112122121122425115514245325121134521111515151552411244455445233421425555
95454222222231342332232234222232
10 271674 1
10551211122221211221121121112222111121122212222211222121111222211212121212222
10222111122111121523224424354422232135542222424352442423244554333233121123222
103222244444422223132222232222222
11 920077 1106581
11421222112222121222212112221112111122221212212212112122211112122212122221212
11212221211211222411215555344425213254522233525352352523345555154223421424442
114242444443442321332142143141141
12 985336 1226642
122 1111222222122121111212111211122122222222212221122222211111112121121121121
122112122222111124112244242224231244444432124333424324223342414242331114422442
12224424444442213323223
13 587634 1021641
13222111212212122212212222212212121112222222212211121121111111222212121211221
13212222222211111323124544244323223234423323 2525255253125455454433421424442
132244244233432222323122331232323
14 745505 0316662
145 12212122121221121121122122121121112122212221221221211111112211221212212112
141122121221211223223245442323454242433432345343545534233423 2312133424444441
141445244455532322222232233232332
15 709324 0324651
153312121122 212221222211212211211211212222 222222212121112222221 11122221221
15212221221221221511225534344513522254323244425353443523345515245223421424444
152344344443432311222232233221222
16 847665 1014641
163321112112121211111112222212212111112212212222121212121112121112221121211122
161112111111122111334115545155415411135521121 1 1 1 1 111 5 133121423442
162242244444433322332433332233134
17 662623 1219621
175 122221121212121222211222111211212221221 22221121212121 22112 212212122222
17212221222211222533115555343512513154431242415252551512225555425123221423441
171241154555432411241242142141242
18 064918 1130652
184 1211112111122222222112222212 22121222212122211222121111122211221122222122
18111122221221122311234434244323322142333322424343342433344443444443444424442
182234444444432222232322332222232
19 962370 0216652
195 1222112212122212222112122112122112222222112211112122111121211212211121212

```
```

1922222122222222233421555414451441114554114151 2 1 2 221 35 522133421423432
195243244454432441341231144141142
20 022161
2053222111122 1112 111 122 22211222222112212222212111112 212212211222211
201222122211221123212244245444455555544522541 252452455 433222422142
20545442222222212112123312212
21 062528 1116641
21351221112212112212222112221212112112222212122211112122212112222212111212212
21112111211121221554115555155415511155511111515152551511155555555133222123221
211111155555551511131251154242242
22 642513 0617652
22351221211212122211212111212212221112122121212121222122112221121122212222211
22122121212111112342115445154224211154421121515152551522245555551123424421442
223242155554531331232431232134333
$23 \quad 8698761120631$
23431221212112121122212112112222222112122212222221222122111212211222212222221
23212212212221111221125434232232324353253224535354543433341243333234411423124
233554334324323222233332212323323
24 594168 0503631
2431211111212112212222211211112112122222211121111112122212212211122211212122
24222211111121121211115525243423422332422122525252442222244424222324444424441
242222244444443423333432243232232
25 042950 1013652
255512221 1222122211212112222212111112 12111122211212122211122121212121221222
252122122121222225112244244455234255542342553354545522254555553 5233131121442
25244424444242221122123 233122231
26 923586 0310641
264522121121221122122212122211122111112221112122112112222111222221122212212
26212211221222122333214534255413412354442123 1 2535525222555 55323312342414
262222245555442421441241243141141
27 786425 0422651
275 1222212212121112222212222112122112122212122121112121112221222112122122211
27212222211211121333234414343432221343242233425352233323244445222333423123244
27543332324333242123243
28 808755 0801612
28221212212122122122212212212212112111211122212112212121111121112221221212221
28112222222112111221324544322225233452443344334344235443511555412344444423444
281555421222122222223222421222123
29 866524 0610652
29542222112212112212222112221112112112222211212111112121112122222211122221222
29222221212121121334324444344424333443422223434453444533444555554333424444444
294444233244432421332232244241131
30 462092 0826651
30451211112211112222122222112222111112221222222212122121112222212222121221211
30212222212122221421423424332345335354212244433354444334343555133333441424442
302244244344432212231231232131131
316603930703651
313412212122121122222121221222121211222212 22221 2 2 211111 221122 122212222
312222111121221214212244442444243242444232 353535455243 353455452343122423442
312242244344422232233232233232232
32 784428 0228652
323522121122121222122212122211221121122211111112111112122112112221212122111222
32212122212121111311224434244423222244542244424242432422244444434242424414442
322222244444432322332232333231332
33 946562 0414631
33452212112212222212122222221112222122222111222212212122112122221211121222212
33212222221121222322115555145323413145412243535213551532254545245241423421142
332222244444432311331131133131131
724496 0114642
34 212122222122211222212221112211112211211212211112122112112222212121221112
342222111111222124213234342323222231544233424233 34 24223435 5435333121423444

```
```

343344344443432222222332233232132
35 705739 1209651
3554112111221222111212212212111111111222222211122121121211111121111211121211221
35212212111112121433234554244533424254333343535255553415434555555433121423422
354252244244422332232232133221232
36 804448 0123651
365512111122211222121222112211122121122222112122111111122211222221112121212222
36212221222121111311224424422224223253323233434353542423344454234333221424442
362222244444432321331331223221243
37 084169 12 2
37432222122 21 22 1 2211222 112212112222112222 1221212221222222221112222221
3721222222 22 2224332145253554215221455111144515354452433345555154133121 2 243
37444324444444231123114
38 627878 071249215
38221211112212122221212111212212222111222122221212112122111122222221122211122
38212221112112111322115555155513511351553122525252551512155555553233414424445
384555311111123222323422422323223
39 860874 0321631
393 2221112212111222212122212212121112222221212111121121211212221222222222211
392122212111211215214235134555112234544 322 4243 4543 4235 1 133122422221
391141155555522222221222143232222
40 800082 0428631
404 2212112212112212212112212212212122212222212122112121111122122212221221121
40222222221121222211323424344242424342332234423343323322432244334344424424442
402223244444432211231131232222131
41 921063 0209641
41442211212222121212221211212122112112122212222212122222111212212221121221222
412122111121211114411234434244324223344333223535353552522255555454233421423321
412244242433432232222322322222322
42 681727 0814622
425 2222112212122212222112221112122122221211221211212122111122222211112222222
42222221212121121411325545244414422344433222425343443533355555253333423424441
422222255555532321331231243131242
43 968726 1121642
43452211212212122212222112212212222122211111212221112122111112212212221222211
43222221212112221411215555145413214255544122525252552412155555232224144444443
432242244444432321322232232141231
44 863631 1126642
44331111112212112111111122221211112112112221222112222121211122212121121111112
442122222122221114211155342443234231444233335352 2552412255555555233122123444
445354334223222243223222322222223
45 763450 0624662
454 22221122121222122221122121122121112 212 21212221211121 1212 2111111122221
45212222212122222511224522422513224243423324334344433423324444244231124424442
452222244444432321231232232132232
46 822636 0312652
463422221122121222122221122222121121122 222 1121221221211121122112 212122211
462122222211212223312244342444332232444333334253525523223545 5544232413413143
4644433332333324212322322321322 32
47 828551 0128651
47342111111221211222111221112211112112211222112211122221111122112222121211122
4721122112212211142312553424452351213444223253 2 25525122555 5454133123423444
472243255455532232222322221232222
48 707455 0922651
48321212112222122222212211212212121121222111211212222121221122121221121211222
48212211111121121421244444444313422354412112424434542424434444442233421423444
485444433233333331222332133121133
49 947704 0215641
49351212112212121212222112221212122112122222112221122122112122111222121221211
49221222221121121334323345232424423244433232515153453522354455442233121443422
493343344444432321332232233132242

```


69542222112212122212222212221112122112221222212222212121111121211121121211122
369212211121121122221124533222333523334223233435342534413342245511333122421242 693242244444432321132332223222232
709662460801662
7054222111221121212222122121212222111221112212211112222111112212112121221112 70212222212221221422215534244423222234432223223355252235545455233121422444 704344433444342222332331233232232
\(71925710 \quad 1022621\)
7122212112212121222222122221112112111112212212212112122112122221211121211221 71211211212211121321224544245423422254542223525253552533355555555244424424444 715444334323332311332141143143442
720445650322651
72431212112212122212122112221112112111222112112222212212111221111212222211221 72212222211121121421215545244423522154422222525252551522255555552233123423324 724444333233242421241141143132242
\(73 \quad 7014190702852\)
73332222211211122212222112222212222122222212221221112122111112211212212122212 7322222222121122311432534243424424443443345533354333443343555555534444424442 732244245554442421222241233232232
745457141224621
\(\begin{array}{lllllllllll}7444222111221212221222222222221221222222222121 & 1 & 11 & 12 & 21 & 2 & 2 & 2 & 21222222\end{array}\) 7422222222222224321255452555132142543432345453545512235255533133121423412 743222244444442312241141213141341
754800530414651
75542222111212121222122112121112112112222111212211211121212212221212222222222
\(751122122221212225111155551554155111355111115151151111 \quad 123121423223\) 755222244444442431241141144114211
\(76 \quad 746510 \quad 0105651\)
76122221122121222122221122211121221122222112122111121221121222112121211112 7621221112212211531343555352512512435554334444443443413332455144433121423421 761111155555531411232131134122131
778471731104641

7752212112212121212222212221112122112112212212212212111112222212211121212212 77221211122121121421115545155524412134512133425252541411255555553133121423431 773142244444432421341142143142141
\(78 \quad 824477 \quad 061\)
78332122112212121212221112222212122212221221222211112121111112222122122222211 7822222222112112153244454445552552233522424525443442413345555443133121423144 783244244343422321221141123121341
\(79 \quad 9432971211641\)
79451221112212112222222212221212122112122212212221122121211122222212122122221 7921222222221122422224434344433433344333255534444454434344455334333421421442 793222244344442411231141233133131
806808241031651
80351211112212122212222212221212122112121221212221212121211122222212121222222
```

80222222221222222421224444244344422244433232434343442432344444444233421421442
802222244444432321332232133132231
81 925080 0625652
81331222111212122212212212211212222112222121221122112211112121212211111221221
81211222121121121411124534244423223354443233525253453422244443342332121423443
814343222342232221222232232132132
82 769450 0104 1
823312111121221111222112112122121121111222221122112121221111112112112111211122
82121221111121111323224545241424123254422232525253534522252255522533121423424
823444422222232232222332223323323
83 747548 0105641
83442211112212222222222212211112211122212221212212212121111112212122122221122
83221222221211222522215455255125522215512223525352551512355555455133121123122
832244445555521211432232133131141
84 860974 0419 1
84451212122222112212222211221112112112222211212211112121212212222221122221112
84212211111121111353214434233322424243332222425253533333343454443333421424133
842232244443432322222232223232233
85 725580 0820652
85322222112212121212222112212212112112222122222211222121211121221111212222112
851122111121112213224335243332212355522533 43334 114244431224143533421424444
854444422222241411331141242241141
86 965386 0201652
86552222112212122212222112222112112112212111222212112122112112122212212121211
86112211111121222323225544244414212144442122425152442422244454522233223423444
864444424222232321332332143133232
87 923440 0520642
87542122112212111112212122122111212112112122212221122122112121211222222221211
87111211121121121451115441155415212125421121 1 1 1 1 111 4 52123123423314
875444422242232321342232144242142
88 847425 0214652
88322212222212122212222211221212211112221222212112222212111122212222121211112
88222222221221121322324434244422223444424255445455552433354555242233124423444
884444442442232321321232243233133
89 841563 0629651
895512222122121212222221122111121121122221112122111111122212212222112222222221
8921222222112122241111554525543221114542222252 2 2 1512255555453233122323422
893222244344442321232142142141131
90 761542 0429652
90421212112212122222122122222112222112221211212211122221111122212212121222222
90212221221221212433225545244523422134512222424252442422244454443233123423443
904343244344232321232232232232131
91 701335 0606642
91441221112212121122212212212222222111222211112211112122212111222212121211221
91212211121121112411224444344423432345533233535352443423344454444333122423123
914353233243332233124322322323132
92064952 0816621
92351211221122121121211211211222211112122222212222121111112221212211121211122
9221211211111121111112244242222422232442422233433422322333423434424224211421443
924424423222222222223322222212223
93 629778 0917631
93432222112212121212222212222112111112222111222211111121111212121211212222211
93212211111221122323214545352443523354313333 2 3545434 3344455 133423442442
933133243455324411242422144142242
94 926098 1104622
94431212211212122212222112222112112122221111211212212122112112221212121221222
94222222211122122311234445222424422244425223535352543532353455433344444444444
944443333333332321222242243142242
95 762917 0517641
95341221111212121212222112212112112112221222212112212122112112212212122222212
952122112121212214112344342422234233534242234242433323322444444423322114424442

```
```

952222244444432332342232143133232
96 026228 0311651
96451111111212221212221112222112112211222222221121211221111212211221121211221
96212221222221111322224444244424222244422222424243432422243444322223424424442
963243244344432332223332223222232
97 748791 0824642
97451222112212112122222112221212112222212221222212112122 1 12222111 222222221
97112222211121221322225555245524421254522222425152442422244444444233424424442
974232244444432311322242142132242
98 684113 1225631
983512221122121222122221122211122121112212121122121111111112122221211212122212
98212221221221222321224444354425222244522223524252442442344544342223444423442
983222244444432411441142144142141
99 644258 1010632
99332112112212122212222212222212111112221122112221222222112122211121222221111
99212222222221111333114545122423212144413133525252551 211533 523233124424444
994444432243332321342242233232142
100 789162 0214651
1005521111112212122222221212221112112111212221222221212121112222111111122222221
100222212222211222451215544255515511 44412222415242552412255555554133121423442
100341224444443142114114124142242
101 908300 0522631
101342222112212122222222212221112112122122222212211112122212212221112111222212
1012122212212221223222245452554234242444532334313 4 24422555 355342421423442
101244224444443231133113
102 968759 0513652
102 1222112112112212222212222112222112211111111121121212111212212 212212221112
102212222211122121323324434432424234453453344535454444433344455343333444424442
1022244244242433411222422243142232
103 842553 1004591
103442212112212112212222212221112111122221211112212211122112122112212121211212
103212212222221122422324434344425522235512223 2 313552523355 555233424424442
1032222244444432311331142233131241
104 063580 0802652
104 2222112212122222222112222112222122222112222111112122211112221212112222221
104212212221221122422115545155412212145452122525152541421155555554233122423441
1041111155545542421342142143141232
105 627286 2
1054321212212222121111111121212121111112221211212211212122112121212221212122112
1052122222121121113212255452334222222234422225252 2 52532253354442244444424445
1055555511111122222222223412213223
106 884917 0324651
106441112111112112222212122221212122111222221222221212121221222221211121211121
106212211222221122411225455355425523244523333535353553523353555555333114424442
1062242244444432321222232233132333
107 475425 26631
107552212122211122212212212212112112212222212122121222221122211222121122211112
1071211111111111121222124413343222222224322222423222233422222232234233121123332
1072222244424234422342333223142343
108 803950 0820641
108441222112211121212222122122212211112221121112212212111112121221212212222211
108112221221121221421125535255523222244542232424252442422244444444233123424342
108422224444444142134224
109 564464 0531562
10944121211221211222122121222111222211222121 1121221112111121222 2 122211122
109211221222222111331224434333425123344443344435343443423344444443333424424332
1093223244444432212321231322231231
110 660329 0715652
2 1104511111222221111212112111111212121112222 11212111111212111 2 11 21 122211122
311021 22 21 12211143122544423252321225543322352 2 2552522355 1532324421424441
41101122155555532212232242323332132

```
```

1 111 988713 0927642
2 1115512111222222111112211112122121121111212112222112221111111222222212121111222
3 11122122122212111133112423442222213555332322 333544434234534343332332241424444
41114444344222223231222321223221231
1112 765325 0929631
2 112342222112212122212222112221112112112222111212211112122112222221212112222212
3 112212221221121222321225544243314422134422122424252551511153355535133123423432
41122222255544442421332241144241141
1 113 849128 0907642
2 113442222112111222212122122121112221212211122212211112122111112122112212222211
3113122222221221221453214545245422222244542222525252552 2225555555 233421421212
41134222244444442422332142144141141
1114 480339 0805642
2114331122122121211222212122111221222122212221212122122111111121212211122212222
3114222221121121112311224424344423223354342233434343343433344444334332121423423
4114443222332433232232222223332232
1 115 682406 13521
2 115341221112212122222222112222212221112221211212211112122112112221212222222221
3 1152122212111122225212244444344422222244444442424243443422234444444433121423322
4 115424334434443232222213
1116 621399 0214652
2 116531212112212122212222212221112211111222121212211112122111112222112121211211
3 1162212222222212223111444424244222213444445344535253452532355555555244444444445
4 1165555511111131311341132234141141
1 117 022208 1016642
2 1175422122121111222122222121211121111111112211212222212121111122221112122122221
3 117212222111112111322522444411324252552222233223544215334331244312344444444442
41174222244444432331332231331232233
1 118 909676 0714662
21185 2222111212122212222112211112212112211112222122222121112122211111212222211
311822221111112112143311 2 25 423214245343233425253552432353555344333123121441
41181232144444431321222341143132232
1 119 829532 0808591
2 119331211212212111112212112211212111111212222112221222121112122221211121211122
311921121121211211132143442433334342334532332334344344324334432332222443444424444
4 1194444422223333333434433433333333
1 120 133372 0818652
2 120242221112212112222211212211112122112122221212211222221112122222211122222211
3120222221222222122222135523354323424333513323545354452423354555341133424424441
41201233245455542312242141233141242
121 649784 1028651
2 1213511111111211111212212112112212122111222221212 12212 1 12122112222221122211
3121 12221222211222421225535152323224244422222425252552422244235521334155524442
4 1212242244444423332322332223231233
1 122 940582 1006632
2 122331222111212121212112122221112112112222111212211112122211111221212212212211
3122212222222221121333124544234421422144422222444243542513342255544233123121222
4 1222254234455543421332241143142243
1 123 605568 1113621
2 123431221112212122212222212221112111111222221222211212122111222222112212222211
3 12321221112122122233111555555551331115552111115151515515111555555551434424424442
4 12322422444444424114411441244141441
124 964707 0610651
2 124551222112211121112122112221112112122221211112222211121111111212211221122112
3 124112221222221222421224434444432523244423333535353553423344555453333424423442
4 1243322234344332322232222223232232
1125 706031 0807652
2 125551212212112112222222112221112112111221212211111212121112121222211121221211
3 12521222121112122141122444444442442424352323352 252552522353455553332123421442
4 1253333244444432311332232233141142
1 126 682031 0928652

```
```

2 12655122221221212221221211211211211111222222 222111212121211122221211212222212
3 1262122212121122224111145452434132223544442222525252534523355355232233414424443
412622422444444432321331342232233232
1 127 922140 0308662
2 1274522221122121222122121122211112122112122211212111112122111112121212212222211
3 127222122222121122334225534244323223244332233525243442412343554352223224443443
4 1272343234333442321332342243142343
128 922351 10 1
12833221221211222112212222221222211111221221221111121112111112222221 121211122
12821211111112111113115314145123245514531232123313141 133511131411 33122442243
1283244132243222242442433234224434
129 680715 0223652
1293 12121122221222122121112211121121222222112222211112121211111222211121111212
1292112122212211223212244443443142223434322223434342442423334444444243123423443
1294423233343431411331241244142241
130 026878 0309652
1304322221122121222222221122211122221222222112121111112121112112122112212222222
1302122222222122221112155342444234234344322334242434434422343444433344444424444
1304432233443341411331142143141231
131 684679 0629562
13142221112212112212222112221112112112221211212212222121112112211212121221222
13121222122212212135411544525522442334451212352 3 2 1522255 552233423421444
1314334323243342421331242233132141
132. 700525 0620582
132431212112112222212222121211212111112222221212121211121111222222112222221122
13221221111121211213114314444114342344512355551515122154255111444214232124423442
1324144244244432321122231233231132
133 726281 0608652
13334112121111112122122221221212111121112221222221222221211111222211211211111111
13311121111111112233322553434453322334554112 1 352 24133523 533433423443142
4 1332244244444232322322152243332232
134 845703 1226632
2 134 51222211212122222212112222112122112221211112221111121112112222111222221222
3 1341212212221221225552245554344255223555532232415353543513244555235323121323422
41344343244344442311332241143131132
1 135 029496 1018641
2 1355422211122121222122221122211121121122222211112212112122112122222212122221111
3 135112222212121121411224433332423223243422223424243443423343454533333422122431
4 13522222444444323321332242233232232
1 136 680200 0313652
2 1364122221121121122122221122211121211122222222212222112122111111221212222122211
3 136112211211121221321224434224323122254422222424243442322242444422244444444444
4 1364244422222242321232232123132332
1 137 988959 0926642
2 137442222212112122212222212222112111112212222112222122122111121112211221222122
3 1372122212122211111111144423223223222244323223424243443322343244432344444444443
4 1372222244433442322332232233232233
1 138 805042 0606641
2 138451121211111211111121122122222111121122221222222212122211222221122122212112
3 1382221112111121115112144443452242224444112223434242443512245455554133121123221
4 1381132244444413134221413441423444
1139 701114 0710651
2 1394511211112121212122221122211121121112222212212111211221111121222212212122222
313921222122112112233321544425442321113444222252 2 1552522252555553233424423122
4 1392422244444432422242242233241133
1140 885979 0529652
2 140351221112211221212121122122111112112212222222211111122212212221112212222211
3140112211121121121334224555234323423244422233425352552512255555541333123424441
4 14011211555555542421442241144142242
1 141 042470 0504641
2 141452111211211112112122122122222212112122211122211222222122221211222212222211

```

31411221222122212114111154351552122111155211111555151352521155555552121423423442 414132442333434322333232332332233
\(\begin{array}{lll}1142 & 707317 & 0613632\end{array}\)
214251121111212112212222112212112222122222221211111112122212112222112222222112
3142212221212121121311214544244423222244422222424242442422242444442244414443444
41424444412222242321131242243142242
\(143 \quad 9284290515641\)
2143551212112222122222221112222122111212212211121122212111102212222222222122 143221121212211151121555543342342225442223252252542523255555555123421423441 1432211155555522231322222323221232
\(144 \quad 9618321105631\)
144311211122222122222111121221211111111121221112222221211111222211111122221122
144222222212221211332225455355335223234513334435353553533355555551343424423445
1445455511111122222222121223221122
\(145 \quad 805798 \quad 21601\)
145242222112212121212212112211212112112222122212212112111112222212212122211
145212221221121222355115145155313512135521111515151551421245515542233123423142
1453244244444442322232233133232132
\(146 \quad 881868 \quad 0508641\)
146552211112122122212212212212112122122221211212211212111211122212221121211122
146221211111112111421234423222342523242423443133253412313214244314333122424221 1462122254555223222223333422222322
\(147 \quad 7817820407642\)
147422221112212122211121112111112212112221111212211112122211112221112212121111 147212121221121111333124554243423411154412222424242442412244444432233423423333 1474222244444442332242224334232241
\(148 \quad 703104 \quad 0529571\)
14831222111211212221212211222211111111122212222122111111111112222212121221221 148112211122222121121215513144313211135331111514151553311154455555142423423444 1484455511111222221231331122222222
\(149 \quad 9244200507652\)

14942221112212122212122122221112111112222111222211112122212122221212212122221
1492122222222122133421554434441442323453323352353552523355555555233421423442
1493222244444442321332242133132122
150 704246 0912652
1501211211212121111122112222112112112222122212212222121111112111222222222222
15022222222122111333324434234423222243422222424243443432244244422333424443442
1502232244444432321232232233232232
\(151985870 \quad 0517651\)
151341222111211112211222112122212122112212112112121112121112121222221212222211
151112221112121121432214555244414222134422222424242442422242444442233123423343
1512222244444442222332242233242223
1528436751220641
152241212112211122212222112121212111112222211222112212221111121212111121221212
1521212111222221215511155551554255111455111111515151551512155555555133121421122
1523224244444442332341242144131143
1536083920323642
15341222112212112212222112221112222112221111212211112122212112121212122121212 \(31532122112121211213331154551345134121555521335353525515112 \quad 144424424442\)
41534242244444441411441141144141141
\(\begin{array}{llll}1 & 154 & 885115 & 0208632\end{array}\)
2154342221112212122212222112221212122112222212222111212222112121122211111121211
3154212221222221121422224544244424423234422232524242443422243444443333121423432
41544344233233342321232242144141132
\(1155 \quad 8047230902652\)
2155441112112212112222212112222212121112112221222121221121111222221211121122222
3155212121221121111411123544222414323243433222433243332422242255431332111423442
41552222244444432312322232233232232
\(156 \quad 9049200730662\)
1562111111221121111212122112121111112222221122212111122111112211222222221
315622222111112211141123454512232342333332323343435245251124335512333121323332
```

41563233234444313143124413322422224
157 745412 1018582
157541212112212122212221212221112112111121221212112221211112122212211121222222
3 157212211112121121332214545244424322245522222424252542422244444542233424124442
4 1573222244444432421332232143132242
158 922242 1115641
158552212112212121222222212221112112112222111222221112122212112221212212222212
158212222121221221311215444255525522134522222525252552522244555445132421423442
15822222444444423212321411444142131
159 943852 0516651
15944222111222111221122211212121221111222222122 21 2 221111 211212212222212
1592 2212211121112222214434343324422244342223324342442322344344323224423424441
1592243244344432222332232233231233
160 920156 0706651
1605 1212112212111212222212221112222112222221112211112121112212212212121211222
160222211122121121333225555242514522254412222425252442422244454424223423423442
41602233244444432311332242243141341
161 942477 1018642
161442222112212121212222112221112112111221221212211112121111112121212221212122
161222221221121222411234443244324423344423223535253552522355555555323424423442
1612222244444441411431141233131141
162 261966 0714321
1621 2222122212122212222112221112222111221211212212212121112122121212121222222
16221212122212222132323444424442552313443323352 3 3453542255555545533424422443
1623222245444441411441241144141241
163 685987 0723652
163342221112212122112222112212222112112221212112122222122112112211212212112211
163112211122121122421224444243223322244422322534252553522355 5522424421424444
4 1634444434232422222332222233222233
164 786381 1201652
1645 2212112212112212222112222112112112212222212121211121212122222211222221111
3 164211222222121122323224445244424422224422222424242442422244444443233424424442
41642222244444432221222242233232132
165 949361 0207641
2 1653321111122112122121221221112121111111112221212111222111212222211222121121222
3 1652112212111111121322224444244422422114422222424242442422244444244244123413442
41652244244242432322222232232232231
1166 481066 0822652
21664 2222112212122212222112221112 2 11221111111122 1112122212112221211212122211
3 16622222222222122141121544534432333222444432235253 2452 33344455445344441421441
41662233255554441411341241133141142
1 167 961487 0821642
21675 1222112211122212222212221112112122122222212212212111112222221212122221211
3 167222222211121121411124544244324222253433223535253552532255555553342121423441
4 1671122155555543412231241243141142
1 168 907020 0310631
2 168341211112212122212121212222122122111122222222221122221111112222211121211211
31682112112211211223521155451443234111455521114141434414111444444444133121424422
4168224424444442232123333
1 169 869723 0102641
2 169242222112212122222212212212212112112222122222212112122111212111212121111222
31692122112212212224341255452444235221345122225352 2 52 122555 554233121123123
4 16921222444454313123421421444131142
1 170 960189 0202652
2 170441222212211111211212222121212111112121221222122212111112121212212122122211
3 17021112111211111211111114312312232222243222233424243423224321243212244443434445
4 1705455411111112222211211122222211
171 607729 1110632
2 17144122121221211221222211222111212211221122111212211211111121211222111112222222
3 171212212212111122222214545222513413254422122425252433432242354322243424444444
4 1714534223223231311331242232142232

```

```

21873 22221122121222122221122212121111111112212212122212111112122111222212222211
3187222221212221222321433244332435522314532222 353 43345544533544523 1344444445
4 18751554111111142411331341134244233
188 765622 0926622
2 188552122212211112112122222122212112111221222212212222221112122211212121122111
3188212211212121121451214544144514413145432222425252551411145444553143421424442
4 1884144244244432333342232233232233
1 189 689446 1220641
2 1893322221112121112112221121212121111122222122121221111111111211222221112112212
3189222211212111121323223444332224224244323233424344543422244244222233123221244
4 1894444422222242322233343233233242
1 190 561212 1016651
2 190332222112212121212122112121212112112221112212221111122 1 211222212212122211
3190 1222222222112243123454334432512325332323353 3 23525512445 4 233321423123
4 1904234234444442422342241244142142
1191 901703 0913631
2 191452111212211222212222122111212212112212221122222122122112112222212222222211
31912222222222211211113234442424232223444422334242433234422242243423344414424444
41913443233344342321233332243242232
1 }19204665042565
2 192332222112212121212221112221112211112222121212211112122211212221212212222122
31922122212212222224111255452554234222344222224242424524122444454444233121423442
4 1922343324444432421441152144142142
1193 709802 0108652
2 193442221112212122212222111221212112111222222222212112121111122222211212122211
31932122112222222224212245252544232232544223335243443422243 233111422322
4 1933242244444442421332242144142241
194 926458 1
2 194341222111212122212212112221212112112222211222212212122112122221212212122211
31941222121222222224113245442424224232544332225253535535333545553552231224422441
4 1941232244444433211233321331322331
1195 787118 0925642
2 195152221112211121212212122222111112112222112222212212122111112122212212222212
3195222211222222122323224434344523223443442233425254452422255455142233421443345
41955454413242242322332343144242332
1 196 885793 0915632
2 19655122211221 122 1221211 121112111111221221112121122212111122212211212122111
3196212111112221122321115545155515214155451131 1 1 3 11 111 3142444444444
419644555111111442421243141144442343
197 963181 0224651
2 197441222112212122212222112221112122111222212222221111122112211221212221222211
3 19721221122212112131111554515442121113542111151515154151115535524214244442444
4 197332322333431142134124214412111
1198 800880 0724642
2 1985522122122121222122222122211121111111122112212111112122212222222212121211122
3198221211121122122431224444244423222344433233425253443432344444442323443424442
41982244244444432321332231232232131
1199 920436 0715652
2199442222112212122212 22211221112111122222112212211112122212112221212121121112
3199211211111122121323324544244424222234432233525253543522255555545333121423442
41993233244344432321321232233131131
Command> USE KERMDAT2 CLE
Command> L UNN

| 1 | 1 | 885979 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 11544525441342214552114141515155151115555555311 |  |
| 1 | 2 | 026228 | 3 |
| 2 | 2 | 21443424432322224442223242525254252225255555221 |  |
| 1 | 3 | 627286 | 3 |
| 2 | 3 | 3244442423332222444433334343534425433434554322 |  |

```


\footnotetext{
2954323234122231422342221455524442112335344221242525355331225345552222
196020103103
2963322323323322233233313552343541541453453343524244443433445555624332
}```

[^0]: ${ }^{1}$ The Iowa State University Committee on the Use of Human Subjects in Research reviewed this project and concluded that the rights and welfare of the human subjects were adequately protected, that risks were outweighed by the potential benefits and expected value of the knowledge sought, that confidentiality of data was assured and that informed consent was obtained by appropriate procedures.

[^1]: *** $\mathrm{Q} \geq .001$.
 ${ }^{2} \geq .05 \quad * * \mathrm{p} \geq .01$

[^2]: Reproduced by special permission of the Publisher, Consulting Psychologists Press, Inc., Palo Alto, CA 94306, from State Trait Anxiety Inventory by Charles Spielberger and Associates 1978. Further reproduction is prohibited without the Publishers consent.

[^3]: Note: The original version of this Wordstar tutorial was written by Jeff Balvanz of the Iowa State University Computation Center.

